【題目】正方形ABCD的對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)E、F分別在OC、OB上,且OE=OF

1)如圖1,若點(diǎn)E、F在線段OC、OB上,連接AF并延長交BE于點(diǎn)M,求證:AMBE;

2)如圖2,若點(diǎn)E、F在線段OC、OB的延長線上,連接EB并延長交AF于點(diǎn)M

①∠AME的度數(shù)為

②若正方形ABCD的邊長為3,且OC=3CE時(shí),求BM的長.

【答案】1)見解析;(2)①90° ;②

【解析】

1)由“SAS”可證AOF≌△BOE,可得∠FAO=OBE,由余角的性質(zhì)可求AMBE;

2)①由“SAS”可證AOF≌△BOE,可得∠FAO=OBE,由余角的性質(zhì)可求∠AME的度數(shù);

②由正方形性質(zhì)可求AC=6,可得OA=OB=OC=3,AE=7OE=4,由勾股定理可求BE=5,通過證明OBE∽△MAE,可得,可求ME的長,即可得BM的長.

證明:(1)∵四邊形ABCD是正方形

AO=BO=CO=DO,ACBD

AO=BO,∠AOF=BOE=90°,OE=OF

∴△AOF≌△BOESAS

∴∠FAO=OBE

∵∠OBE+OEB=90°,

∴∠OAF+BEO=90°

∴∠AME=90°

AMBE

2)①∵四邊形ABCD是正方形

AO=BO=CO=DO,ACBD

AO=BO,∠AOF=BOE=90°,OE=OF

∴△AOF≌△BOESAS

∴∠FAO=OBE,

∵∠OBE+OEB=90°,

∴∠FAO+OBE=90°

∴∠AME=90°

故答案為:90°

②∵AB=BC=3,∠ABC=90°

AC=6

OA=OB=OC=3

OC=3CE

CE=1,

OE=OC+CE=4,AC=AC+AE=7

BE==5

∵∠AME=BOE=90°,∠AEM=OEB

∴△OBE∽△MAE

ME=

MB=ME-BE=-5=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀后,請(qǐng)解答.

已知,符合表示大于或等于的最小正整數(shù),如,,

填空:________,________,若,則的取值范圍是________

某市的出租車收費(fèi)標(biāo)準(zhǔn)規(guī)定如下:以內(nèi)(包括)收費(fèi)元,超過的每超過,加收(不足的按計(jì)算).用表示所行的千米數(shù),表示行應(yīng)付車費(fèi),則乘車費(fèi)可按如下的公式計(jì)算:當(dāng)(單位:)時(shí),();當(dāng)(單位:)時(shí),().某乘客乘車后付費(fèi)元,該乘客所行的路程的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店有一臺(tái)不準(zhǔn)確的天平(其臂長不等)及砝碼.某顧客要購買糖果,售貨員先將砝碼放于左盤,置一些糖果于右盤,使之平衡后給顧客;又將砝碼放于右盤,另置糖果于左盤,平衡后再倒給顧客,這種稱法是否合理?[提示:當(dāng)天平(不準(zhǔn)確)平衡后,所掛重物與臂長成反比].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x單位:小時(shí)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)

3請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)先化簡,再求值: x2xy2+(﹣2x+y2),其中x2,y=﹣3

2)已知:若ab互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為最小正整數(shù),求代數(shù)式﹣2cd+m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個(gè)外角.

實(shí)驗(yàn)與操作:根據(jù)要求進(jìn)行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)

(1)作∠DAC的平分線AM

(2)作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

探究與猜想:若∠BAE=36°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察一組數(shù)據(jù):2,4,7,11,16,22,29,…,它們有一定的規(guī)律,若記第一個(gè)數(shù)為a1,第二個(gè)數(shù)記為a2,…,第n個(gè)數(shù)記為an.

(1)請(qǐng)寫出29后面的第一個(gè)數(shù);

(2)通過計(jì)算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;

(3)根據(jù)你發(fā)現(xiàn)的規(guī)律求a100的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,D是BC邊上一點(diǎn),∠ADC=3∠BAD,BD=8,DC=7,則AB的值為( )

A. 15 B. 20 C. 2+7 D. 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校中午學(xué)生用餐比較擁擠,為建議學(xué)校分年級(jí)錯(cuò)時(shí)用餐,李老師帶領(lǐng)數(shù)學(xué)學(xué)習(xí)小組在某天隨機(jī)調(diào)查了部分學(xué)生,統(tǒng)計(jì)了他們從下課到就餐結(jié)束所用的時(shí)間,并繪制成統(tǒng)計(jì)表和如圖所示的不完整統(tǒng)計(jì)圖.

根據(jù)以上提供的信息,解答下列問題:

1)表中a=_____b=_____,c=_____,補(bǔ)全頻數(shù)分布直方圖;

2)此次調(diào)查中,中位數(shù)所在的時(shí)間段是_____min

時(shí)間分段/min

頻(人)數(shù)

百分比

10≤x<15

8

20%

15≤x<20

14

a

20≤x<25

10

25%

25≤x<30

b

12.50%

30≤x<35

3

7.50%

合計(jì)

c

100%

3)這所學(xué)校共有1200人,試估算從下課到就餐結(jié)束所用時(shí)間不少于20min的共有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案