【題目】如圖,點在反比例函數(shù)的圖象上,點在反比例函數(shù)的圖象上,且,線段交反比例函數(shù)的圖象于另一點,連結(jié).若點為的中點,,則的值為_________.
【答案】
【解析】
過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,由tan∠OCA=,得∠OCA=60°,再由直角三角形斜邊上的中線等于斜邊的一半可得出OC=AC,進而可得出△AOC為等邊三角形,進而求得,再證明△AOD∽△OBE,根據(jù)相似三角形的性質(zhì)結(jié)合反比例函數(shù)k的幾何意義可得出結(jié)果.
解:過點A作AD⊥x軸于點D,過點B作BE⊥x軸于點E,如圖所示.
∵tan∠OCA=,
∴∠OCA=60°,
∵∠AOB=90°,點C為AB的中點,
∴OC=AC=BC,
∴△OAC是等邊三角形,
∴∠OAB=60°,
∴=
∵∠AOB=90°,
∴∠AOD+∠BOE=90°,
∵∠AOD+∠OAD=90°,
∴∠OAD=∠BOE,
∵∠ADO=∠OEB=90°,
∴△AOD∽△OBE,
∴=3.
∵點A在反比例函數(shù)y=(x>0)的圖象上,
∴S△AOD=
∴S△OBE=.
∵點B在反比例函數(shù)y=(k<0)的圖象上,
∴k=﹣=﹣3,
故答案為:﹣3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果三角形的兩個內(nèi)角∠α與∠β滿足∠α=2∠β,那么,我們將這樣的三角形稱為“倍角三角形”.如果一個等腰三角形是“倍角三角形”,那么這個等腰三角形的腰長與底邊長的比值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角標系中,拋物線C:y=與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點D為y軸正半軸上一點.且滿足OD=OC,連接BD,
(1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當(dāng)S△PBD最大時,連接AP,以PB為邊向上作正△BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN=2且點N位于M點下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問的條件下,點C關(guān)于x軸的對稱點為E,將△BOE繞著點A逆時針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點E,此時拋物線C′與x軸的右交點記為點F,連接E′F,B′F,R為線段E’F上的一點,連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個點S,使得以B′、R、T、S為頂點的四邊形為矩形,求點S的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位計劃購進三種型號的禮品共件,其中型號禮品件,型號禮品比型號禮品多件.已知三種型號禮品的單價如下表:
型號 | |||
單價(元/件) |
(1)求計劃購進和兩種型號禮品分別多少件?
(2)實際購買時,廠家給予打折優(yōu)惠銷售(如: 折指原價,在計劃總價額不變的情況下,準備購進這批禮品.
①若只購進兩種型號禮品,且型禮品件數(shù)不超過型禮品的倍,求型禮品最多購進多少件?
②若只購進兩種型號禮品,它們的單價分別打折、折,均為整數(shù),且購進的禮品總數(shù)比計劃多件,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對教材“課題學(xué)習(xí)”中的“用一張正方形折出一個正八邊形”的問題進行了認真地探索.他先把正方形沿對角線對折,再把對折,使點落在上,記為點.然后沿的中垂線折疊,得到折痕,如圖1,類似地,折出其余三條折痕,得到八邊形,如圖2.
(1)求證:是等腰直角三角形.
(2)若,求的長.(用含的代數(shù)式表示)
(3)我們把八條邊長相等,八個內(nèi)角都相等的八邊形叫做正八邊形,試說明八邊形是正八邊形,請把過程補充完整.
解:理由如下:
①
同理可得:
②
同理可得:
∴八邊形是正八邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是半圓O的直徑,AB=6,點C在半圓O上.過點A作AD⊥OC,垂足為點D,AD的延長線與弦BC交于點E,與半圓O交于點F(點F不與點B重合).
(1)當(dāng)點F為的中點時,求弦BC的長;
(2)設(shè)OD=x,=y,求y與x的函數(shù)關(guān)系式;
(3)當(dāng)△AOD與△CDE相似時,求線段OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD為正方形,∠CAB的角平分線交BC于點E,過點C作CF⊥AE交AE的延長線于點G,CF與AB的延長線交于點F,連接BG、DG、與AC相交于點H,則下列結(jié)論:①ABECBF;②GF=CG;③BG⊥DG;④,其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】攀枝花得天獨厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠銷北上廣等大城市.某水果店購進一批優(yōu)質(zhì)晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.
銷售量(千克) | … | 32.5 | 35 | 35.5 | 38 | … |
售價(元/千克) | … | 27.5 | 25 | 24.5 | 22 | … |
(1)某天這種芒果售價為28元/千克.求當(dāng)天該芒果的銷售量
(2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com