【題目】如圖1,已知:△ABD∽△ACE,∠ABD=ACE=90°,連接DE,ODE的中點(diǎn)。

1)連接OC,OB 求證:OB=OC

2)將△ACE繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,過(guò)點(diǎn)EEMAD交射線AB于點(diǎn)M,交射線AC于點(diǎn)N,連接DM,BC. DE的中點(diǎn)O恰好在AB上。

①求證:△ADM∽△AEN

②求證:BCAD

③若AC=BD=3,AB=4,ACE繞頂點(diǎn)A旋轉(zhuǎn)的過(guò)程中,是否存在四邊形ADME矩形的情況?如果存在,直接寫出此時(shí)BC的值,若不存在說(shuō)明理由。

【答案】(1)詳見(jiàn)解析;(2)①詳見(jiàn)解析;②詳見(jiàn)解析;③存在四邊形ADME為矩形,此時(shí)BC=

【解析】

1)延長(zhǎng)COBD于點(diǎn)F,可證△CEO≌△FDO,則OC=OF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;
2)①根據(jù)平行的性質(zhì)得∠DAM=EMA,可證△AOD≌△MOE,則AD=EM,根據(jù)平行四邊形的判定定理可判斷ADME是平行四邊形,由平行四邊形的性質(zhì)可得∠ADM=AEN,由△ABD∽△ACE可得∠BAD=CAE,即可證△ADM∽△AEN;

②根據(jù)相似三角形對(duì)應(yīng)邊成比例可得 ,由比例的性質(zhì)得 ,因?yàn)椤?/span>MAN=BAC,根據(jù)相似三角形的判定定理可證出△AMN∽△ABC,則∠AMN=ABC,根據(jù)同位角相等,兩直線平行可得MNBC,根據(jù)平行于同一條直線的兩直線平行可得BCAD

③存在四邊形ADME為矩形,此時(shí)BC=,如圖,延長(zhǎng)BCAEF,求出BF= ,CF= ,即可求得BC的值.

解:(1)延長(zhǎng)COBD于點(diǎn)F

∵∠ABD=ACE=90°

CEBD

∴∠CEO=FDO

ODE的中點(diǎn)

OE=OD

∵∠COE=DOF

∴△CEO≌△FDO

OC=OF

∵∠CBF=90°

BO=CF=OC

(2)①∵ODE的中點(diǎn)

OE=OD

EMAD

∴∠DAM=EMA

∵∠AOD=MOE

∴△AOD≌△MOE

AD=EM

EMAD

∴四邊形ADME是平行四邊形

∴∠ADM=AEN

∵△ABD∽△ACE

∴∠BAD=CAE

∴△ADM∽△AEN ;

②∵△ADM∽△AEN

∵△ABD∽△ACE

∵∠MAN=BAC

∴△AMN∽△ABC

∴∠AMN=ABC

MNBC

MNAD

BCAD

如圖,存在四邊形ADME為矩形,此時(shí)BC= .

故答案為:(1)詳見(jiàn)解析;(2)①詳見(jiàn)解析;②詳見(jiàn)解析;③存在四邊形ADME為矩形,此時(shí)BC= .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x軸相交于A,B兩點(diǎn),點(diǎn)P是拋物線上一點(diǎn),且,

求該拋物線的表達(dá)式;

設(shè)點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M在曲線BA之間含端點(diǎn)移動(dòng)時(shí),求的最大值及取得最大值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點(diǎn)D,E,過(guò)點(diǎn)DDF⊥AC,垂足為F,線段FD,AB的延長(zhǎng)線相交于點(diǎn)G

1)求證:DF⊙O的切線;

2)若CF=1,DF=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)y= +1-2axa0),下列說(shuō)法錯(cuò)誤的是( 。

A. 當(dāng)時(shí),該二次函數(shù)圖象的對(duì)稱軸為y

B. 當(dāng)a時(shí),該二次函數(shù)圖象的對(duì)稱軸在y軸的右側(cè)

C. 該二次函數(shù)的圖象的對(duì)稱軸可為x=1

D. 當(dāng)x2時(shí),y的值隨x的值增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點(diǎn)D到地面的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,我市為了解學(xué)生的視力變化情況,從全市八年級(jí)隨機(jī)抽取了1200名學(xué)生,統(tǒng)計(jì)了每個(gè)人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計(jì)圖,并對(duì)視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計(jì)圖.

解答下列問(wèn)題:

(1)圖中“其他”所在扇形的圓心角度數(shù)為 ;

(2)若2016年全市八年級(jí)學(xué)生共有24000名,請(qǐng)你估計(jì)視力在4.9以下的學(xué)生約有多少名?

(3)根據(jù)扇形統(tǒng)計(jì)圖信息,你認(rèn)為造成中學(xué)生視力下降最主要的因素是什么,你覺(jué)得中學(xué)生應(yīng)該如何保護(hù)視力?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的兩邊AD,AB的長(zhǎng)分別為38,且BCx軸的負(fù)半軸上,EDC的中點(diǎn),反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)E,與AB交于點(diǎn)F

1)若點(diǎn)B坐標(biāo)為(﹣6,0),求m的值;

2)若AFAE2.且點(diǎn)E的橫坐標(biāo)為a.則點(diǎn)F的橫坐標(biāo)為   (用含a的代數(shù)式表示),點(diǎn)F的縱坐標(biāo)為   ,反比例函數(shù)的表達(dá)式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開(kāi)A地的路程s(單位:千米)與時(shí)間t(單位:小時(shí))的函數(shù)關(guān)系的圖象,設(shè)在這個(gè)過(guò)程中,甲、乙兩人相距y(單位:千米),則y關(guān)于t的函數(shù)圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)

x

銷售量y(件)

    

銷售玩具獲得利潤(rùn)w(元)

    

2)在(1)問(wèn)條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元.

3)在(1)問(wèn)條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案