解:(1)C(3,-4),M(
,0);
(2)△BME是直角三角形,
∵四邊形OABC是菱形,
∴直線AC是它的對稱軸.
∵PE⊥AC
∴點P和點E,點O與點B都關(guān)于AC對稱.
∴∠EBM=∠AOM=90°.
∴△BME是直角三角形.
(3)連接OE,
由對稱性得:∠PBM=∠EOM.
∵∠PBM=∠OAB,∠APB=∠AEO,
∴∠EOM=∠OAB
∵∠EOM+∠EOA=90°
∴∠OAB+∠EOA=90°
∴∠APB=∠AEO=90°.
∵B(3,1)
∴OP=1,從而AP=4
∴tan∠ABP=
.
(4)如圖2,連接OB,由題意知:OP=OQ,∠POB=∠QOB
∴OB⊥PQ
由四邊形OABC是菱形,知OB⊥AC,PQ∥AC.
∵PE⊥AC,
∴∠QPE=90°
△PQE為等腰三角形,只可能是:PE=PQ.
由△APE∽△AOB得:PE=
;
由△OPQ∽△OAC得:PQ=
;
∴
=
,
解得:t=
.
即:當(dāng)t=
時,△PQE是等腰三角形.
分析:(1)C與B的橫坐標(biāo)相等,則C的橫坐標(biāo)等于B的橫坐標(biāo),若過B作y軸的垂線于X,在直角△ABX中,利用勾股定理即可求得AB的長,則BC的長度可以求得,從而求得C的縱坐標(biāo);
然后利用待定系數(shù)法即可求得AC的解析式,進(jìn)而求得M的坐標(biāo);
(2)根據(jù)AC是菱形OABC的對稱軸,根據(jù)對稱性可以證得∠EBM=∠AOM=90,即可得到△BME是直角三角形;
(3)根據(jù)對稱的性質(zhì),可以證得∠APB=90°,即可求得B的坐標(biāo).則利用正切函數(shù)的定義求解;
(4)根據(jù)對稱的性質(zhì)可得:PE⊥AC,則∠QPB=90°,則若△PQE為等腰三角形,只可能是:PE=PQ.根據(jù)△APE∽△AOB和△OPQ∽△OAC,用t表示出PE,PQ的長,從而得到一個關(guān)于t的方程,即可求解.
點評:本題考查了菱形的性質(zhì),正確應(yīng)用菱形是軸對稱圖形,利用軸對稱的性質(zhì)是解題關(guān)鍵.