【題目】紅星公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的 日銷(xiāo)售量(件)與時(shí)間(天)的關(guān)系如下表:
時(shí)間(天) | 1 | 3 | 6 | 10 | 36 | … |
日銷(xiāo)售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y1=t+25(1≤t≤20且t為整數(shù));后20天每天的價(jià)格y2(原/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y2=—t+40(21≤t≤40且t為整數(shù)).下面我們來(lái)研究 這種商品的有關(guān)問(wèn)題.
(1)認(rèn)真分析上表中的數(shù)量關(guān)系,利用學(xué)過(guò)的一次函數(shù)、二次函數(shù) 、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)之間的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中那一天的銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中該公司決定每銷(xiāo)售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程,公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求a的取值范圍.
【答案】(1)y=﹣2t+96;(2)當(dāng)t=14時(shí),利潤(rùn)最大,最大利潤(rùn)是578元;(3)3≤a<4.
【解析】
(1)通過(guò)觀察表格中的數(shù)據(jù)日銷(xiāo)售量與時(shí)間t是均勻減少的,所以確定m與t是一次函數(shù)關(guān)系,利用待定系數(shù)法即可求出函數(shù)關(guān)系式;
(2)根據(jù)日銷(xiāo)售量、每天的價(jià)格及時(shí)間t可以列出銷(xiāo)售利潤(rùn)W關(guān)于t的二次函數(shù),然后利用二次函數(shù)的性質(zhì)即可求出哪一天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少;
(3)列式表示前20天中每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn),根據(jù)函數(shù)的性質(zhì)求出a的取值范圍 .
(1)設(shè)數(shù)m=kt+b,有,解得
∴m=-2t+96,經(jīng)檢驗(yàn),其他點(diǎn)的坐標(biāo)均適合以上
析式故所求函數(shù)的解析式為m=-2t+96.
(2)設(shè)日銷(xiāo)售利潤(rùn)為P,
由P=(-2t+96)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且對(duì)稱軸為t=44,
∴函數(shù)P在21≤t≤40上隨t的增大而減小,
∴當(dāng)t=21時(shí),P有最大值為(21-44)2-16=529-16=513(元),
答:來(lái)40天中后20天,第2天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是513元.
(3)P1=(-2t+96)
=-+(14+2a)t+480-96n,
∴對(duì)稱軸為t=14+2a,
∵1≤t≤20,
∴14+2a≥20得a≥3時(shí),P1隨t的增大而增大,
又∵a<4,
∴3≤a<4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,正比例函數(shù)與一次函數(shù)的圖象相交于點(diǎn),過(guò)點(diǎn)作軸的垂線,分別交正比例函數(shù)的圖像于點(diǎn)B,交一次函數(shù)的圖象于點(diǎn)C,連接OC.
(1)求這兩個(gè)函數(shù)解析式.
(2)求的面積.
(3)在坐標(biāo)軸上存在點(diǎn),使是以為腰的等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,禁止捕魚(yú)期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚(yú)船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚(yú)船,求巡邏船從出發(fā)到成功攔截捕魚(yú)船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過(guò)點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有a個(gè)除顏色外完全相同的紅球和白球,其中紅球有b個(gè),將盒中的球搖勻后從中任意摸出1個(gè)球,記錄顏色后將球放回盒中,重復(fù)進(jìn)行這過(guò)程,如表記錄了某班一次摸球?qū)嶒?yàn)情況:
摸球總數(shù)n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
摸到紅球數(shù)m | 325 | 1336 | 3203 | 6335 | 8073 | 12628 |
摸到紅球的頻率(精確到0.001) | 0.813 | 0.891 | 0.915 | 0.905 | 0.897 | 0.902 |
(1)由此估計(jì)任意摸出1個(gè)球?yàn)榧t球的概率約是 (精確到0.1)
(2)實(shí)驗(yàn)結(jié)束后,小明發(fā)現(xiàn)了一個(gè)一般性的結(jié)論:盒子中共有a個(gè)球,其中紅球有b個(gè),則搖勻后從中任意摸出1個(gè)球?yàn)榧t球的概率P可以表示為,這個(gè)結(jié)論也得到了老師的證實(shí)根據(jù)小明的發(fā)現(xiàn),若在該盒子中再放入除顏色外與原來(lái)的球完全相同的2個(gè)紅球和2個(gè)白球,搖勻后從中任意摸出1個(gè)球?yàn)榧t球的概率為P’,請(qǐng)通過(guò)計(jì)算比較P與P'的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=6a,BC=6b,∠D=60°,點(diǎn)E、F、G、H分別在ABCD各邊上,且BE=DG=AE,CF=AH=BF.
(1)求證:四邊形EFGH是平行四邊形;
(2)若四邊形EFGH是菱形,求的值;
(3)四邊形EFGH能為正方形嗎?若能,請(qǐng)直接寫(xiě)出a、b的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?
(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請(qǐng)你完成余下的證明過(guò)程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開(kāi)展“一起閱讀,共同成長(zhǎng)”課外讀書(shū)周活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了八年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生總數(shù)為______人,在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形圓心角度數(shù)是______;
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校八年級(jí)共有學(xué)生人,估計(jì)八年級(jí)一周課外閱讀時(shí)間至少為小時(shí)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com