如圖,將三個同樣的正方形的一個頂點重合放置,那么∠1的度數(shù)為


  1. A.
    30°
  2. B.
    20°
  3. C.
    40°
  4. D.
    45°
B
分析:由圖易得50°+60°-∠1=90°,即可求解.
解答:由圖可得50°+60°-∠1=90°,
則∠1=20°.
故選B.
點評:認真讀圖,找到角與角的關系是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為15的正方形OEFP置于直角坐標系中,OE、OP分別與x軸、y軸的正半軸重合,邊長為2
3
的等邊△ABC的邊BC垂直于x軸,△ABC從點A與點O重合的位置開始,以每秒1個單位長的速度先向右平移,當BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當點C與點F重合時,△ABC停止移動.設運動時間為x秒,△PAC的面積為y.
(1)當x為何值時,P、A、B三點在同一直線上,求出此時A點的坐標;
(2)在△ABC向右平移的過程中,當x分別取何值時,y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動的過程中,請你就△PAC面積大小的變化情況提出一個綜合論斷.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為8
3
的正方形OEFP置于直角坐標系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長;
(2)等邊△ABC的邊長為2
3
,頂點A與坐標原點O重合,BC⊥x軸于點D,△ABC從點O出發(fā),以每秒1個單位長的速度先向右平移,當BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當點C與點F重合時,△ABC停止移動.設運動時間為t秒,△PAC的面積為y.①在△ABC向右平移的過程中,求y與t的函數(shù)關系式,并寫出自變量t的取值范圍;②當t為何值時,P、A、B三點在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,將邊長為8數(shù)學公式的正方形OEFP置于直角坐標系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長;
(2)等邊△ABC的邊長為數(shù)學公式,頂點A與坐標原點O重合,BC⊥x軸于點D,△ABC從點O出發(fā),以每秒1個單位長的速度先向右平移,當BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當點C與點F重合時,△ABC停止移動.設運動時間為t秒,△PAC的面積為y.①在△ABC向右平移的過程中,求y與t的函數(shù)關系式,并寫出自變量t的取值范圍;②當t為何值時,P、A、B三點在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建省泉州市永春縣九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,將邊長為8的正方形OEFP置于直角坐標系中,OE、OP分別與x軸、y軸的正半軸重合.
(1)直接寫出正方形OEFP的周長;
(2)等邊△ABC的邊長為,頂點A與坐標原點O重合,BC⊥x軸于點D,△ABC從點O出發(fā),以每秒1個單位長的速度先向右平移,當BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當點C與點F重合時,△ABC停止移動.設運動時間為t秒,△PAC的面積為y.①在△ABC向右平移的過程中,求y與t的函數(shù)關系式,并寫出自變量t的取值范圍;②當t為何值時,P、A、B三點在同一直線上(精確到0.1秒).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省揚州市中考數(shù)學模擬試卷(解析版) 題型:解答題

如圖,將邊長為15的正方形OEFP置于直角坐標系中,OE、OP分別與x軸、y軸的正半軸重合,邊長為的等邊△ABC的邊BC垂直于x軸,△ABC從點A與點O重合的位置開始,以每秒1個單位長的速度先向右平移,當BC邊與直線EF重合時,繼續(xù)以同樣的速度向上平移,當點C與點F重合時,△ABC停止移動.設運動時間為x秒,△PAC的面積為y.
(1)當x為何值時,P、A、B三點在同一直線上,求出此時A點的坐標;
(2)在△ABC向右平移的過程中,當x分別取何值時,y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動的過程中,請你就△PAC面積大小的變化情況提出一個綜合論斷.

查看答案和解析>>

同步練習冊答案