如圖(1)在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB向B點(diǎn)運(yùn)動(dòng). 當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒.

 

1.求梯形ABCD的面積.

2.當(dāng)t為何值時(shí),四邊形PQCD成為平行四邊形?

3.是否存在t,使得P點(diǎn)在線段DC上,且PQ⊥DC(如圖(2)所示)?若存在,求出此時(shí)t的值,若不存在,說明理由

 

 

1.作DH∥AB交BC于H,利用勾股定理說明DH⊥BC------2分

再求得面積為48cm2--------------------------------4分

2.若四邊形PQCD成為平行四邊形

則PD=CQ,所以4-4t=5t

3.

∴t=秒

∴存在時(shí)間t,當(dāng)t=秒時(shí),P點(diǎn)在線段DC上,且PQ⊥DC.

 解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點(diǎn)P,過點(diǎn)P作PE∥AB,裁掉△PEC,并將△PEC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)180°拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn):
判斷圖2中四邊形ABEF的形狀:
 
;四邊形ABEF的面積是
 
.(用含字母的代數(shù)式表示)
實(shí)踐探究:
類比圖2的剪拼方法,請(qǐng)你就圖3(已知:AB∥DC)畫出剪拼成一個(gè)平行四邊形的示意圖.
精英家教網(wǎng)精英家教網(wǎng)
聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):在一個(gè)四邊形中,只要有一組對(duì)邊平行,就可以剪拼成平行四邊形.
(1)如圖4,在梯形ABCD中,AD∥BC,E是CD的中點(diǎn),EF⊥AB于點(diǎn)F,AB=5,EF=4,求梯形ABCD的面積.
(2)如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一平行四邊形?若能,請(qǐng)你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在梯形ABCD中,AD∥BC,且BC=12cm,AD=15cm,動(dòng)點(diǎn)Q由點(diǎn)B沿BC向點(diǎn)C移動(dòng),1秒鐘后動(dòng)點(diǎn)P由點(diǎn)A沿AD向點(diǎn)D移動(dòng)
(1)若動(dòng)點(diǎn)P的速度比動(dòng)點(diǎn)Q的速度大1厘米/秒,且動(dòng)點(diǎn)Q到達(dá)C時(shí),動(dòng)點(diǎn)P 恰好也到達(dá)D.試求動(dòng)點(diǎn)P、Q的速度.
(2)若動(dòng)點(diǎn)P的速度為5厘米/秒,動(dòng)點(diǎn)Q的速度為3厘米/秒,在運(yùn)動(dòng)過程中(P與A、D不重合時(shí)),AQ與BP交于K,CP與DQ交于N
①當(dāng)動(dòng)點(diǎn)Q到達(dá)BC中點(diǎn)時(shí),過K作KM∥AD交AB于M,求KM的長;(如圖2)
②在這運(yùn)動(dòng)過程中,KN是否會(huì)與AD平行?若會(huì),請(qǐng)求出此時(shí)為P點(diǎn)出發(fā)后幾秒?若不會(huì),請(qǐng)說明理由.(如圖3)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)已知:如圖1,在梯形ABCD中,AD∥BC,∠A=90°,AD=6,AB=8,sinC=
45
,點(diǎn)P在射線DC上,點(diǎn)Q在射線AB上,且PQ⊥CD,設(shè)DP=x,BQ=y.
(1)求證:點(diǎn)D在線段BC的垂直平分線上;
(2)如圖2,當(dāng)點(diǎn)P在線段DC上,且點(diǎn)Q在線段AB上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)若以點(diǎn)B為圓心、BQ為半徑的⊙B與以點(diǎn)C為圓心、CP為半徑的⊙C相切,求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

①如圖1,在梯形ABCD中,AB∥CD,AD=BC,對(duì)角線AC⊥BD,垂足為O.若CD=3,AB=5,則AC的長為
4
2
4
2

②如圖2,在等腰梯形ABCD中,AC⊥BD,AC=6cm,則等腰梯形ABCD的面積為
18
18
cm2
③如圖3,在等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD于點(diǎn)O,AE⊥BC,DF⊥BC,垂足分別為E、F,AD=4,BC=8,則AE+EF等于
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在梯形ABCD中,AD∥BC,AD=2,BC=4.AB=2,CD=2
2

(1)請(qǐng)你判斷這個(gè)梯形是直角梯形嗎?說說你的理由.
(2)請(qǐng)你把梯形ABCD分成四個(gè)全等的梯形.(圖2供畫圖用)

查看答案和解析>>

同步練習(xí)冊(cè)答案