【題目】如果(m1x2+2x30是一元二次方程,則m的取值范圍為_____

【答案】m1

【解析】

一元二次方程有三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.

解:(m1x2+2x30是一元二次方程,得

m1,

故答案為:m1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016重慶市第26題)如圖1,二次函數(shù)的圖象與一次函數(shù)y=kx+b(k0)的圖象交于A,B兩點,點A的坐標(biāo)為(0,1),點B在第一象限內(nèi),點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k0)的圖象與x軸的交點,過點B作x軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;

(2)點P是線段AB上一點,點D是線段BC上一點,PD//x軸,射線PD與拋物線交于點G,過點P作PEx軸于點E,PFBC于點F,當(dāng)PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+BH的值最小,求點H的坐標(biāo)和GH+BH的最小值;

(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)沿直線BC平移,平移的距離是t(t0),平移后拋物線使點A,點C的對應(yīng)點分別為點A,點C;當(dāng)ACK是直角三角形時,求t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式的同分母的分式,叫做分式的通分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)(4分)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號)

(2)(5分)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣y2n+1÷yn+1= ;[(﹣m)3]2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016云南省第22題)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式(也稱關(guān)系式)

(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCABC是位似圖形.ABC的面積為6 cm2ABC的周長是ABC的周長一半.則ABC的面積等于(  )

A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)觀察下面的正四面體、正六面體、正八面體,解決下列問題:

⑴填空:

①正四面體的頂點數(shù)V ,面數(shù)F ,棱數(shù)E .

②正六面體的頂點數(shù)V ,面數(shù)F ,棱數(shù)E .

③正八面體的頂點數(shù)V ,面數(shù)F ,棱數(shù)E .

⑵若將多面體的頂點數(shù)用V表示,面數(shù)用F表示,棱數(shù)用E表示,則V、FE之間的數(shù)量關(guān)系可用一個公式來表示,這就是著名的歐拉公式,請寫出歐拉公式:

⑶如果一個多面體的棱數(shù)為30,頂點數(shù)為20,那么它有多少個面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣東省深圳市第23題)如圖,拋物線軸交于A、B兩點,且B(1 , 0)。

(1)、求拋物線的解析式和點A的坐標(biāo);

(2)、如圖1,點P是直線上的動點,當(dāng)直線平分APB時,求點P的坐標(biāo);

(3)如圖2,已知直線 分別與 交于C、F兩點。點Q是直線CF下方的拋物線上的一個動點,過點Q作 軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE。問以QD為腰的等腰QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案