【題目】如圖,在正方形中,是等邊三角形,、的延長線分別交于點,連接,相交于點,給出下列結論:①;②;③;④.其中正確的個數(shù)是(

A. 1B. 2C. 3D. 4

【答案】C

【解析】

由正方形的性質及相似三角形的判定與性質,即可得到結論.

△BPC是等邊三角形,

BP=PC=BC,PBC=PCB=∠BPC=60°,

在正方形ABCD中,∵AB=BC=CD,A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

BE=2AE,故正確;

PC=CD,PCD=30°,

∴∠PDC=75°,

∠FDP=15°,

∵∠DBA=45°,

∠PBD=15°

∠FDP=∠PBD,

∵∠DFP=∠BPC=60°

,正確;

∠FDP=PBD=15°,∠ADB=45°,

∴∠PDB=30°,而∠DFP=60°

∴∠PFD≠∠PDB

不會相似,故錯誤;

∠PDH=∠PCD=30°,∠DPH=∠DPC,

正確,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】奇思參加我市電視臺組織的牡丹杯智力競答節(jié)目,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,這兩道題奇思都不會,不過奇思還有兩個求助可以使用(使用求助一次可以讓主持人去掉其中一題的一個錯誤選項).

1)如果奇思兩次求助都在第一道單選題中使用,求他通關的概率;

2)如果奇思每道單選題各使用一次求助",請用列表法或畫樹狀圖的方法求他順利通關的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016·寧夏中考)如圖,已知△ABC,以AB為直徑的⊙O分別交ACD,BCE,連接ED,若EDEC.

(1)求證:ABAC

(2)AB4,BC2 ,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在∠ABC中,∠ABC90°,tanBAC

1)如圖1,分別過AC兩點作經(jīng)過點B的直線的垂線,垂足分別為M、N,若點B恰好是線段MN的中點,求tanBAM的值;

2)如圖2,P是邊BC延長線上一點,∠APB=∠BAC,求tanPAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠A<∠B,沿ABC的中線CMCMA折疊,使點A落在點D處,若CD恰好與MB垂直,則tanA的值為__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC18,BC12,正方形DEFG的頂點E,FABC內,頂點DG分別在AB,AC上,ADAGDG6,則點FBC的距離為( )

A.1B.2C.126D.66

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點P,AP=2,BP=6,APC=30°,則CD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結論:①b24ac;②2a+b0;③ab+c0;④5ab.其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BCx軸平行,A,B兩點的縱坐標分別為42,反比例函數(shù)y(x0)的圖象經(jīng)過A,B兩點,若菱形ABCD的面積為2,則k的值為______.

查看答案和解析>>

同步練習冊答案