【題目】如圖,AB為⊙O的直徑,弦CF⊥AB于點(diǎn)E,CF=4,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)D,∠D=30°,則OA的長為( 。
A. 2 B. 4 C. 4 D. 4
【答案】B
【解析】
由∠D=30°,利用切線的性質(zhì)可得∠COB的度數(shù),利用等邊三角形的判定和性質(zhì)及切線的性質(zhì)可得∠BCD,易得BC=BD,由垂徑定理得CE的長,在直角三角形COE中,利用銳角三角函數(shù)易得OC的長,得BD的長.
解:連結(jié)CO,BC,
∵CD切⊙O于C,
∴∠OCD=90°,
又∵∠D=30°,
∴∠COB=60°,
∴△OBC是等邊三角形,即BC=OC=OB,
∴∠BCD=90°﹣∠OCB=30°,
∴BC=DB,
又∵直徑AB⊥弦CF,
∴直徑AB平分弦CF,即CE=,
在Rt△OCE中,sin∠COE==,
∴OC==4,
∴OA=OC=4.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小明拿著老師的等腰直角三角尺玩,不小心掉到兩堆磚塊之間,如圖所示.
(1)求證:△ADC≌△CEB;
(2)已知DE=35cm,請你幫小明求出磚塊的厚度a的大小(每塊磚的厚度相同).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,P是直線AC上一點(diǎn),AD⊥BP于D,以AD為邊作等邊△ADE(D,E在直線AC異側(cè)).
(1)如圖1,若點(diǎn)P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)
(2)如圖2,若點(diǎn)P在AC延長線上,DE交BC于F求證:BF=CF;
(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是的中點(diǎn),是延長線上的一點(diǎn),.
求證;
閱讀下列材料:
如圖,把沿直線平行移動(dòng)線段的長度,可以變到的位置;
如圖,以為軸把翻折,可以變到的位置;
如圖,以點(diǎn)為中心把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法使變到的位置,
答:________.
②指出圖中,線段與之間的關(guān)系.
答:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn),,
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式
(2)請結(jié)合圖像直接寫出不等式的解集;
(3)若點(diǎn)P為x軸上一點(diǎn),△ABP的面積為10,求點(diǎn)P的坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十一期間,小明一家一起去旅游,如圖是小明設(shè)計(jì)的某旅游景點(diǎn)的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實(shí)際長度100m,在該圖紙上可看到兩個(gè)標(biāo)志性景點(diǎn)A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點(diǎn)A(﹣3,1),B(﹣3,﹣3),第三個(gè)景點(diǎn)C(1,3)的位置已破損.
(1)請?jiān)趫D中畫出平面直角坐標(biāo)系,并標(biāo)出景點(diǎn)C的位置;
(2)平面直角坐標(biāo)系的坐標(biāo)原點(diǎn)為點(diǎn)O,△ACO是直角三角形嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點(diǎn)C置于直線l上,圖2是由圖1抽象出的幾何圖形,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為D、E.
(1)△ACD與△CBE全等嗎?說明你的理由.
(2)若AD=2,DE=3.5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B= 60°.
(1)如圖①.若點(diǎn)E、F分別在邊AB、AD上,且BE=AF,求證:△CEF是等邊三角形.
(2)小明發(fā)現(xiàn),當(dāng)點(diǎn)E、F分別在邊AB、AD上,且∠CEF=60°時(shí),△CEF也是等邊三角形,
并通過畫圖驗(yàn)證了猜想;小麗通過探索,認(rèn)為應(yīng)該以CE= EF為突破口,構(gòu)造兩個(gè)全等三角形:小倩受到小麗的啟發(fā),嘗試在BC上截取BM =BE,并連接ME,如圖②,很快就證明了△CEF是等邊三角形.請你根據(jù)小倩的方法,寫出完整的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com