【題目】已知:點(diǎn)P是平行四邊形ABCD對角線AC所在直線上的一個動點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BP作垂線,垂足分別為E、F,點(diǎn)O為AC的中點(diǎn).
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時如圖1,求證:OE=OF
(2)直線BP繞點(diǎn)B逆時針方向旋轉(zhuǎn),當(dāng)點(diǎn)P在對角線AC上時,且∠OFE=30°時,如圖2,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?并給予證明.
(3)當(dāng)點(diǎn)P在對角線CA的延長線上時,且∠OFE=30°時,如圖3,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論即可.
【答案】
(1)
解:∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
,
∴△AOE≌△COF(AAS),
∴OE=OF
(2)
解:圖2中的結(jié)論為:CF=OE+AE
選圖2中的結(jié)論證明如下:
延長EO交CF于點(diǎn)G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
,
∴△EOA≌△GOC(ASA),
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等邊三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE
(3)
解:圖3中的結(jié)論為:CF=OE﹣AE
選圖3的結(jié)論證明如下:
延長EO交FC的延長線于點(diǎn)G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
,
∴△AOE≌△COG(AAS),
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等邊三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG﹣CG,
∴CF=OE﹣AE.
【解析】(1)由△AOE≌△COF即可得出結(jié)論.(2)圖2中的結(jié)論為:CF=OE+AE,延長EO交CF于點(diǎn)G,只要證明△EOA≌△GOC,△OFG是等邊三角形,即可解決問題.(3)圖3中的結(jié)論為:CF=OE﹣AE,延長EO交FC的延長線于點(diǎn)G,證明方法類似.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識,掌握等邊三角形的三個角都相等并且每個角都是60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF. 若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為4, P、Q、R分別為邊AB、BC、AC上的動點(diǎn),則PR+QR的最小值是 _____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一個例題: 有一個窗戶形狀如圖1,上部是一個半圓,下部是一個矩形,如果制作窗框的材料總長為6m,如何設(shè)計(jì)這個窗戶,使透光面積最大?
這個例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時,透光面積最大值約為1.05m2 .
我們?nèi)绻淖冞@個窗戶的形狀,上部改為由兩個正方形組成的矩形,如圖2,材料總長仍為6m,利用圖3,解答下列問題:
(1)若AB為1m,求此時窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請通過計(jì)算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是正方形?給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將斜邊長為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時針旋轉(zhuǎn)120°后點(diǎn)P的對應(yīng)點(diǎn)的坐標(biāo)是( )
A.( ,1)
B.(1,﹣ )
C.(2 ,﹣2)
D.(2,﹣2 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將九年級部分男生擲實(shí)心球的成績進(jìn)行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com