【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
【答案】(1)見解析;(2).
【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進(jìn)而可證明△ADE∽△ABC;
(2)△ADE∽△ABC,,又易證△EAF∽△CAG,所以,即可求解.
解:(1)證明:在ΔABC中,
∵AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F
∴∠AFE=∠AGC=90°
∵∠EAF=∠GAC
∴∠AED=∠C
在ΔADE和ΔABC中,
∵∠AED=∠C,∠EAD=∠CAB
∴ΔADE∽ΔABC.
(2)解:在ΔAEF和ΔACG中,
∵∠AFE=∠AGC,∠EAF=∠GAC
∴ΔAEF∽ΔAGC
由(1)知ΔADE∽ΔABC
∴
又ΔAEF∽ΔAGC
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 若一個四邊形的兩條對角線互相垂直且相等,則稱這個四邊形為奇妙四邊形.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)奇妙四邊形對角線互相垂直的特征可得奇妙四邊形的一個重要性質(zhì):奇妙四邊形的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形 奇妙四邊形(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形,若⊙O的半徑為6,∠ BCD=60°.求奇妙四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形作OM⊥BC于M.請猜測OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(3,0),C(1,﹣1),AC交x軸于點(diǎn)P.
(1)∠ACB的度數(shù)為_____;
(2)P點(diǎn)坐標(biāo)為______;
(3)以點(diǎn)O為位似中心,將△ABC放大為原來的2倍,請?jiān)趫D中畫出所有符合條件的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對對稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)請直接寫出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)E是弧AC的中點(diǎn),連結(jié)EB、CA交于點(diǎn)F,則 的值為( )
A.B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。
(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點(diǎn)的對應(yīng)點(diǎn)B、C的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對應(yīng)點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有長為24m的籬笆,一面利用墻(墻的最大可用長度a為10m),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長是多少米?
(3)能圍成面積比45 m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個“東方時尚島、海上新溫州”.為了解溫州市民對甌江口新區(qū)的關(guān)注情況,某學(xué)校數(shù)學(xué)興趣小組隨機(jī)采訪部分溫州市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | m | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | n |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計表可得此次采訪的人數(shù)為 人;m= ,n= ;
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,估計25000名溫州市民中高度關(guān)注甌江口新區(qū)的市民約 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com