A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 ①由四邊形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折疊的性質(zhì),可求得∠ADG的度數(shù);
②由AE=EF<BE,可得AD>2AE;
③由AG=GF>OG,可得△AGD的面積>△OGD的面積;
④由折疊的性質(zhì)與平行線的性質(zhì),易得△EFG是等腰三角形,即可證得AE=GF;
⑤易證得四邊形AEFG是菱形,由等腰直角三角形的性質(zhì),即可得BE=2OG;
⑥根據(jù)四邊形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF時等腰直角三角形,由S△OGF=1求出GF的長,進(jìn)而可得出BE及AE的長,利用正方形的面積公式可得出結(jié)論.
解答 解:∵四邊形ABCD是正方形,
∴∠GAD=∠ADO=45°,
由折疊的性質(zhì)可得:∠ADG=$\frac{1}{2}$∠ADO=22.5°,
故①正確.
∵由折疊的性質(zhì)可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<$\frac{1}{2}$AB,
∴$\frac{AD}{AE}$>2,
故②錯誤.
∵∠AOB=90°,
∴AG=FG>OG,△AGD與△OGD同高,
∴S△AGD>S△OGD,
故③錯誤.
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE,
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF,
∵AE=EF,
∴AE=GF,
故④正確.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四邊形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=$\sqrt{2}$OG,
∴BE=$\sqrt{2}$EF=$\sqrt{2}$×$\sqrt{2}$OG=2OG.
故⑤正確.
∵四邊形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF時等腰直角三角形.
∵S△OGF=1,
∴$\frac{1}{2}$OG2=1,解得OG=$\sqrt{2}$,
∴BE=2OG=2$\sqrt{2}$,GF=$\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}$=$\sqrt{2+2}$=2,
∴AE=GF=2,
∴AB=BE+AE=2$\sqrt{2}$+2,
∴S正方形ABCD=AB2=(2$\sqrt{2}$+2)2=12+8$\sqrt{2}$,故⑥錯誤.
∴其中正確結(jié)論的序號是:①④⑤.
故選B.
點評 此題考查的是四邊形綜合題,涉及到正方形的性質(zhì)、折疊的性質(zhì)、等腰直角三角形的性質(zhì)以及菱形的判定與性質(zhì)等知識.此題綜合性較強(qiáng),難度較大,注意掌握折疊前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -a>-b | B. | -a+1>b+1 | C. | $\frac{1}{a}$>$\frac{1}$ | D. | ac<bc |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com