某地上網(wǎng)有兩種收費方式,用戶可以任選其一:
(A)記時制:3元/小時,(B)包月制:100元/月.
此外,每一種上網(wǎng)方式都加收通訊費1.2元/小時.
(1)某用戶上網(wǎng)多少小時,兩種付費方式的上網(wǎng)費用一樣?
(2)某用戶為選擇合適的付費方式,記錄了一個月中連續(xù)5天的上網(wǎng)時間,如下表:
 第一天第二天第三天第四天第五天
上網(wǎng)時間/時1.41.20.91.41.1
如果一個月按30天計算,根據(jù)以上信息,該用戶選擇哪種付費方式合算?請說明理由.
考點:一元一次方程的應(yīng)用
專題:應(yīng)用題
分析:(1)直接根據(jù)題意列出方程求解,即可解決問題.
(2)根據(jù)題意,分別按兩種付費方式算出每月的上網(wǎng)費用,即可解決問題.
解答:解:(1)設(shè)上網(wǎng)x小時,兩種付費方式的上網(wǎng)費用一樣,
根據(jù)題意得:(3+1.2)x=1.2x+100,
解得:x=
100
3

故該戶上網(wǎng)
100
3
小時時,兩種付費方式的上網(wǎng)費用一樣.
(2)由題意得:該戶平均每天上網(wǎng)(1.4+1.2+0.9+1.4+1.1)÷5=1.2(小時),
∴若按第A種上網(wǎng)方式需繳費4.2×1.2×30=151.2(元),
若按第B種上網(wǎng)方式需繳費1.2×1.2×30+100=143.2(元),
∴該用戶選擇B種付費方式合算.
點評:該題主要考查了一元一次方程的實際應(yīng)用問題;解題的關(guān)鍵是認真把握題意,準確找出命題中隱含的數(shù)量關(guān)系,正確列出方程來分析、運算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,順次連接正方形ABCD的四邊中點得到正方形①,再順次連接正方形①的四邊得到正方形②,依此規(guī)律繼續(xù)連接可得到正方形③,正方形④,…
(1)若正方形ABCD的面積為16,則正方形③的邊長a3=
 
;
(2)若正方形ABCD的面積為S,則正方形n的邊長an=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠α的余角是∠β的補角的
1
3
,并且∠β=
2
3
∠α,試求∠α+∠β的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)60°后得到△COD,若∠AOB=15°,則∠AOD的度數(shù)是( 。
A、15°B、60°
C、45°D、75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)I是△ABC的內(nèi)心,BC=AC+AI,∠ABC-∠ACB=12°,則∠BAC=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OM平分∠AOB,OC是∠AOB內(nèi)部的一條射線,ON平分∠BOC,有以下說法:
①∠AOC=∠BOM
②∠CON=∠BON
③∠AOC=∠AOM+∠COM
④∠AOC=∠BOM+∠COM
⑤∠AOC=2∠MOC+∠COB
⑥∠AOC=2∠MOC+2∠CON
⑦∠AOC=2∠MON
其中正確的有( 。﹤.
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有三人患流感,經(jīng)過兩輪傳染后有363人患流感,若開始五人患流感,則一輪后有多少人患流感?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)組織員工外出旅游,如果單獨租用45座客車若干輛,則剛好座滿;如果單獨租用60座客車,也剛好座滿,且可以少租一輛,設(shè)該企業(yè)參加旅游的人數(shù)為x人,則可列得分式方程為
 
,解得x=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:在△ABC中,∠ABC=90°,AB=4,BC=2,將△ABC繞點B逆時針旋轉(zhuǎn)得到△DBF,延長D交AC于點E.
(1)求證:DE⊥AC;
(2)求證:DF•DE=DB•DC;
(3)求sin∠EDC的值和AE,EF的長.

查看答案和解析>>

同步練習冊答案