我們知道,經(jīng)過原點(diǎn)的拋物線解析式可以是。
(1)對(duì)于這樣的拋物線:
當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),a= ;
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),a 與m之間的關(guān)系式是 ;
(2)繼續(xù)探究,如果b≠0,且過原點(diǎn)的拋物線頂點(diǎn)在直線上,請(qǐng)用含k的代數(shù)式表示b;
(3)現(xiàn)有一組過原點(diǎn)的拋物線,頂點(diǎn)A1,A2,…,An在直線上,橫坐標(biāo)依次為1,2,…,n(n為正整數(shù),且n≤12),分別過每個(gè)頂點(diǎn)作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經(jīng)過點(diǎn)Dn,求所有滿足條件的正方形邊長(zhǎng)。
(1)-1;(2)(3)3,6,9
【解析】解:(1)-1;。
(2)∵過原點(diǎn)的拋物線頂點(diǎn)在直線上,∴。
∵b≠0,∴。
(3)由(2)知,頂點(diǎn)在直線上,橫坐標(biāo)依次為1,2,…,n(n為正整數(shù),且n≤12)的拋物線為:,即。
對(duì)于頂點(diǎn)在在直線上的一點(diǎn)A m(m,m)(m為正整數(shù),且m≤n),依題意,作的正方形AmBmCmDm邊長(zhǎng)為m,點(diǎn)Dm坐標(biāo)為(2 m,m),
若點(diǎn)Dm在某一拋物線上,則
,化簡(jiǎn),得。
∵m,n為正整數(shù),且m≤n≤12,∴n=4,8,12,m=3,6,9。
∴所有滿足條件的正方形邊長(zhǎng)為3,6,9。
(1)當(dāng)頂點(diǎn)坐標(biāo)為(1,1)時(shí),由拋物線頂點(diǎn)坐標(biāo)公式,有,即。
當(dāng)頂點(diǎn)坐標(biāo)為(m,m),m≠0時(shí),。
(2)根據(jù)點(diǎn)在直線上,點(diǎn)的坐標(biāo)滿足方程的關(guān)系,將拋物線頂點(diǎn)坐標(biāo)代入,
化簡(jiǎn)即可用含k的代數(shù)式表示b。
由于拋物線與直線只有一個(gè)公共點(diǎn),意味著聯(lián)立解析式后得到的一元二次方程,其根的判別式等于0,由此可求出m的值和D點(diǎn)坐標(biāo)。
(3)將依題意,作的正方形AmBmCmDm邊長(zhǎng)為m,點(diǎn)Dm坐標(biāo)為(2 m,m),將(2 m,m)代入拋物線求出m,n的關(guān)系,即可求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
1 |
m |
1 |
m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:福州 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年福建省福州市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com