分析 (1)要證明BD是該外接圓的直徑,只需要證明∠BAD是直角即可,又因?yàn)椤螦BD=45°,所以需要證明∠ADB=45°;
(2)在CD延長(zhǎng)線上截取DE=BC,連接EA,只需要證明△EAC是等腰直角三角形即可得出結(jié)論;
(3)過(guò)點(diǎn)M作MF⊥MB于點(diǎn)M,過(guò)點(diǎn)A作AF⊥MA于點(diǎn)A,MF與AF交于點(diǎn)F,證明△AMF是等腰三角形后,可得出AM=AF,MF=$\sqrt{2}$AM,然后再證明△ABF≌△ADM可得出BF=DM,最后根據(jù)勾股定理即可得出DM2,AM2,BM2三者之間的數(shù)量關(guān)系.
解答 解:(1)∵$\widehat{AB}$=$\widehat{AB}$,
∴∠ACB=∠ADB=45°,
∵∠ABD=45°,
∴∠BAD=90°,
∴BD是△ABD外接圓的直徑;
(2)在CD的延長(zhǎng)線上截取DE=BC,
連接EA,
∵∠ABD=∠ADB,
∴AB=AD,
∵∠ADE+∠ADC=180°,
∠ABC+∠ADC=180°,
∴∠ABC=∠ADE,
在△ABC與△ADE中,
$\left\{\begin{array}{l}{AB=AD}\\{∠ABC=∠ADE}\\{BC=DE}\end{array}\right.$,
∴△ABC≌△ADE(SAS),
∴∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE=90°,
∵$\widehat{AD}$=$\widehat{AD}$
∴∠ACD=∠ABD=45°,
∴△CAE是等腰直角三角形,
∴$\sqrt{2}$AC=CE,
∴$\sqrt{2}$AC=CD+DE=CD+BC;
(3)過(guò)點(diǎn)M作MF⊥MB于點(diǎn)M,過(guò)點(diǎn)A作AF⊥MA于點(diǎn)A,MF與AF交于點(diǎn)F,連接BF,
由對(duì)稱性可知:∠AMB=∠ACB=45°,
∴∠FMA=45°,
∴△AMF是等腰直角三角形,
∴AM=AF,MF=$\sqrt{2}$AM,
∵∠MAF+∠MAB=∠BAD+∠MAB,
∴∠FAB=∠MAD,
在△ABF與△ADM中,
$\left\{\begin{array}{l}{AF=AM}\\{∠FAB=∠MAD}\\{AB=AD}\end{array}\right.$,
∴△ABF≌△ADM(SAS),
∴BF=DM,
在Rt△BMF中,
∵BM2+MF2=BF2,
∴BM2+2AM2=DM2.
點(diǎn)評(píng) 本題考查圓的綜合問(wèn)題,涉及圓周角定理,等腰三角形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理等知識(shí),綜合程度較高,解決本題的關(guān)鍵就是構(gòu)造等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠B=∠C | B. | AD=AE | C. | BD=CE | D. | BE=CD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com