在方程組數(shù)學(xué)公式中,已知xy<0,則m的取值范圍是


  1. A.
    -3<m<6
  2. B.
    -6<m<3
  3. C.
    m>3
  4. D.
    m<-6
B
分析:先把m看做已知數(shù),解方程組可得x=,y=,再把x、y的值代入xy<0中,再根據(jù)異號得負(fù),可得
,解不等式組即可.
解答:
①+②,得
3x=6+m,
解得x=,
把x=代入①,得
+y=m,
解得y=
把x、y的值代入xy<0,得
<0,
,
解得-6<m<3.
故選B.
點評:本題考查了解一元一次方程組、解一元一次不等式組,解題的關(guān)鍵是把m看做已知數(shù)解方程,并注意掌握消元思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知一次函數(shù)y1=kx+b的圖象分別過點A(-1,1),B(2,2).
(1)在直角坐標(biāo)系中直接畫出函數(shù)y2=|x|的圖象;
(2)根據(jù)圖象寫出方程組
y=|x
y=kx+b
的解;
(3)根據(jù)圖象回答:當(dāng)x為何值時,y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)模擬)探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”
(1)完成下列空格:
當(dāng)已知矩形A的邊長分別為6和1時,小明是這樣研究的:設(shè)所求矩形的一邊是x,則另一邊為(
7
2
-x),由題意得方程:x(
7
2
-x)=3,化簡得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴滿足要求的矩形B存在.
小紅的做法是:設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
消去y化簡后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長分別為2和1,請你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
y=
7
2
-x
y=
3
x
,此時兩個方程都可以看成是函數(shù)解析式,從而我們可以利用函數(shù)圖象解決一些問題.如圖,在同一平面直角坐標(biāo)系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結(jié)合剛才的研究,回答下列問題:(完成下列空格)
①這個圖象所研究的矩形A的面積為
8
8
;周長為
18
18

②滿足條件的矩形B的兩邊長為
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江西省期末題 題型:探究題

探索一個問題:
  “任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”(閱讀(1)完成后面的問題)
   1) .當(dāng)已知矩形A的邊長分別為6和1時,小亮同學(xué)是這樣研究的:設(shè)所求矩形的兩邊分別是,
     由題意得方程組:,
    消去y化簡得:
     ∵△=49-48>0
     ∴ ∴滿足要求的矩形B存在;
  2).如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
  3).對上述(2)中問題,小明同學(xué)從“圖形”的角度,利用函數(shù)圖象給予了解決.小明論證的過程開始是這樣的:如果用x、y分別表示矩形的長和寬,那么矩形B滿足x+y=,xy=1.請你按照小明的論證思路完成后面的論證過程. 
 
 4).如圖,在同一平面直角坐標(biāo)系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結(jié)合剛才的研究,回答下列問題:   
    ①.這個圖象所研究的矩形A的兩邊長為___ __和__ ___;  
    ②.滿足條件的矩形B的兩邊長為___ __和___ __.

查看答案和解析>>

同步練習(xí)冊答案