如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30o,在射線OC上取一點A,過點A作AH⊥x軸于點H。在拋物線y=x(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是                     .

 

【答案】

(3,) , (,) , (2,2) , (,)

【解析】①當∠POQ=∠OAH=60°,若以P,O,Q為頂點的三角形與△AOH全等,那么A、P重合;由于∠AOH=30°,所以直線OA:y=x,聯(lián)立拋物線的解析式,得:,解得;故A(,);

②當∠POQ=∠AOH=30°,此時△POQ≌△AOH;

易知∠POH=60°,則直線OP:y=x,聯(lián)立拋物線的解析式,

得:,解得,;故P(,3),那么A(3,);

③當∠OPQ=90°,∠POQ=∠AOH=30°時,此時△QOP≌△AOH;

易知∠POH=60°,則直線OP:y=x,聯(lián)立拋物線的解析式,

得:,解得、,故P(,3),∴OP=2,QP=2,∴OH=OP=2,AH=QP=2,

故A(2,2);

④當∠OPQ=90°,∠POQ=∠OAH=60°,此時△OQP≌△AOH;

此時直線OP:y=x,聯(lián)立拋物線的解析式,得:,解得,

∴P(,),∴QP=,OP=,∴OH=QP,QP=,AH=OP=,

故A().

綜上可知:符合條件的點A有四個,且坐標為:則符合條件的點A的坐標是(3,) , (,) , (2,2) , (,).

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A有
 
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H,得到△AOH.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形△POQ與△AOH全等,則符合條件的△AOH的面積是
3
2
3
,2
3
,
1
18
3
2
9
3
3
2
3
,2
3
1
18
3
2
9
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點,且以點Q為直角頂點的三角形與△AOH全等,則符合條件的點A的坐標是
(3,
3
),(
1
3
3
,
1
3
(3,
3
),(
1
3
3
1
3

查看答案和解析>>

同步練習冊答案