分析 (1)利用準(zhǔn)矩形的定義和勾股定理計算,再根據(jù)準(zhǔn)矩形的特點和整點的特點求出即可;
(2)先利用正方形的性質(zhì)判斷出△ABE≌△BCF,即可;
(2)分三種情況分別計算,用到梯形面積公式,對角線面積公式,對角線互相垂直的四邊形的面積計算方法.
解答 解:(1)①∵∠ABC=90,
∴BD=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{4+9}$=$\sqrt{13}$,
故答案為$\sqrt{13}$,
②∵A(0,3),B(5,0),
∴AB=$\sqrt{{5}^{2}+{3}^{2}}$=6,
設(shè)點P(m,n),A(0,0),
∴OP=$\sqrt{{m}^{2}+{n}^{2}}$=6,
∵m,n都為整數(shù),
∴點P(3,5)或(5,3);
故答案為P(3,5)或(5,3);
(2)∵四邊形ABCD是正方形,
∴AB=BC∠A=∠ABC=90°,
∴∠EAF+∠EBC=90°,
∵BE⊥CF,
∴∠EBC+∠BCF=90°,
∴∠EBF=∠BCF,
∴△ABE≌△BCF,
∴BE=CF,
∴四邊形BCEF是準(zhǔn)矩形;
(3)$\sqrt{15}+\sqrt{3}$,$\sqrt{39}+\sqrt{3}$,$2\sqrt{15}$
∵∠ABC=90°,∠BAC=60°,AB=2,
∴BC=2$\sqrt{3}$,AC=4,
準(zhǔn)矩形ABCD中,BD=AC=4,
①當(dāng)AC=AD時,如圖1,作DE⊥AB,
∴AE=BE$\frac{1}{2}$AB=1,
∴DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{16-1}$=$\sqrt{15}$,
∴S準(zhǔn)矩形ABCD=S△ADE+S梯形BCDE
=$\frac{1}{2}$DE×AE+$\frac{1}{2}$(BC+DE)×BE
=$\frac{1}{2}$×$\sqrt{15}$+$\frac{1}{2}$(2$\sqrt{3}$+$\sqrt{15}$)×1
=$\sqrt{15}$+$\sqrt{3}$;
②當(dāng)AC=CD時,如圖2,
作DF⊥BC,
∴BD=CD,
∴BF=CF=$\frac{1}{2}$BC=$\sqrt{3}$,
∴DF=$\sqrt{C{D}^{2}-C{F}^{2}}$=$\sqrt{16-3}$=$\sqrt{13}$,
∴S準(zhǔn)矩形ABCD=S△DCF+S梯形ABFD
=$\frac{1}{2}$FC×DF+$\frac{1}{2}$(AB+DF)×BF
=$\frac{1}{2}$×$\sqrt{3}$×$\sqrt{13}$+$\frac{1}{2}$(2+$\sqrt{13}$)×$\sqrt{3}$
=$\sqrt{39}$+$\sqrt{3}$;
③當(dāng)AD=CD,如圖3,
連接AC中點和D并延長交BC于M,連接AM,連接BG,過B作BH⊥DG,
在Rt△ABC中,AC=2AB=4,
∴BD=AC=4,
∴AG=$\frac{1}{2}$AC=2,
∵AB=2,
∴AB=AG,
∵∠BAC=60°,
∴∠ABG=60°,
∴∠CBG=30°
在Rt△BHG中,BG=2,∠BGH=30°,
∴BH=1,
在Rt△BHM中,BH=1,∠CBH=30°,
∴BM=$\frac{2\sqrt{3}}{3}$,HM=$\frac{\sqrt{3}}{3}$,
∴CM=$\frac{4\sqrt{3}}{3}$,
在Rt△DHB中,BH=1,BD=4,
∴DH=$\sqrt{15}$,∴DM=DH-MH=$\sqrt{15}$-$\frac{\sqrt{3}}{3}$,
∴S準(zhǔn)矩形ABCD=S△ABM+S四邊形AMCD,
=$\frac{1}{2}$BM×AB+$\frac{1}{2}$AC×DM
=$\frac{1}{2}$×$\frac{2\sqrt{3}}{3}$×2+$\frac{1}{2}$×4×($\sqrt{15}$-$\frac{\sqrt{3}}{3}$)
=2$\sqrt{15}$;
故答案為$\sqrt{15}$+$\sqrt{3}$,$\sqrt{39}$+$\sqrt{3}$,2$\sqrt{15}$.
點評 此題是四邊形綜合題,主要考查了新定義,勾股定理,梯形面積公式,對角線面積公式,三角形面積公式,分情況計算是解本題的難點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$ | B. | 2,3,4 | C. | 6,7,8 | D. | 1,$\sqrt{2}$,$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com