【題目】已知:如圖在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對角線OB、AC相交于D點(diǎn),雙曲線 x 0經(jīng)過D點(diǎn),交AB于E點(diǎn),且OBAC=160,則點(diǎn)E的坐標(biāo)為( ).
A.(3,8)B.(12,)C.(4,8)D.(12,4)
【答案】B
【解析】
過點(diǎn)B作軸于點(diǎn),由可求出菱形的面積,由點(diǎn)的坐標(biāo)可求出的長,根據(jù)勾股定理求出的長,故可得出點(diǎn)的坐標(biāo),對角線相交于D點(diǎn)可求出點(diǎn)坐標(biāo),用待定系數(shù)法可求出雙曲線的解析式,與的解析式聯(lián)立,即可求出點(diǎn)的坐標(biāo).
過點(diǎn)B作軸于點(diǎn),
,點(diǎn)的坐標(biāo)
又 菱形的邊長為10,
在中,
又 點(diǎn)是線段的中點(diǎn),
點(diǎn)的坐標(biāo)為
又
直線的解析式為
聯(lián)立方程可得:
解得: 或,
點(diǎn)的坐標(biāo)為
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形和四邊形都是正方形,且,,正方形固定,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)角().
(1)如圖②,連接、,相交于點(diǎn),請判斷和是否相等?并說明理由;
(2)如圖②,連接,在旋轉(zhuǎn)過程中,當(dāng)為直角三角形時(shí),請直接寫出旋轉(zhuǎn)角的度數(shù);
(3)如圖③,點(diǎn)為邊的中點(diǎn),連接、、,在正方形的旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在,請求出這個(gè)最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒子中有4個(gè)球,每個(gè)球上寫有1~4中的一個(gè)數(shù)字,不同的球上數(shù)字不同.
(1)若從盒中取三個(gè)球,以球上所標(biāo)數(shù)字為線段的長,則能構(gòu)成三角形的概率是多少?
(2)若小明從盒中取出一個(gè)球,放回后再取出一個(gè)球,然后讓小華猜兩球上的數(shù)字之和,你認(rèn)為小華猜和為多少時(shí),猜中的可能性大.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).
(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;
(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):
A′ ,B′ ,C′ ;
(3)在(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對應(yīng)點(diǎn)D′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,分別以 AC 和 BC 為邊向外作正方形 ACFG 和正方形 BCDE,過點(diǎn) D 做 FC 的延長線的垂線,垂足為點(diǎn) H.
(1)求證:△ABC≌△HDC;
(2)連接 FD,交 AC 的延長線于點(diǎn) M,若 AG= ,tan∠ABC= ,求△FCM 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,(1)數(shù)軸上的所有點(diǎn)都表示有理數(shù);(2)無理數(shù)可以用數(shù)軸上的點(diǎn)表示;(3)實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng);(4)無限小數(shù)是無理數(shù);(5)帶根號的數(shù)都是無理數(shù);(6)數(shù)軸上的點(diǎn)不是表示有理數(shù),就是表示無理數(shù);錯誤命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,E為BC中點(diǎn),F是AB上一點(diǎn),G為AD上一點(diǎn),且BF=2,∠FEG=60°,EG交AC于點(diǎn)H,下列結(jié)論:①△BEF∽△CHE;②AG=1;③EH=;④S△BEF=3S△AGH;正確的是______.(填序號即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com