【題目】如圖,AB是⊙O的直徑,點C在⊙O上,過點C作射線CM且滿足∠ACM=∠ABC.
(1)判斷CM與⊙O的位置關系,并證明;
(2)延長BC到D,使BC=CD,連接AD與CM交于點E,若⊙O的半徑為3,ED=2,求△ACE的外接圓的半徑.
【答案】(1)證明見解析;(2)△AEC的外接圓的半徑為
【解析】試題分析:(1)利用圓周角定理結合等腰三角形的性質利用∠ACM=∠ABC求出答案;(2)首先得出△AEC的外接圓的直徑是AC,進而結合相似三角形的性質得出AC的長,進而得出答案.
試題解析:(1)證明:如圖,連接OC
∵AB為O的直徑,
∴∠ACB=90°,
∴∠ABC+∠BAC=90°,
又∵∠ACM=∠ABC,∠OAC=∠OCA,
∴∠OCA+∠ACM=90°,
∴CM是O的切線;
(2)∵BC=CD,
∴OC∥AD,
又∵OC⊥CE,
∴AD⊥CE,
∴△AEC是直角三角形,
∴△AEC的外接圓的直徑是AC,
又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,
∴△ABC∽△CDE,
∴,
O的半徑為3,
∴AB=6,
∴,
∴BC2=12,
∴BC=2,
∴AC=,
∴△AEC的外接圓的半徑為.
故答案為: .
科目:初中數(shù)學 來源: 題型:
【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點F,G,P分別是DE,BC,CD的中點,連接PF,PG.
(1)如圖①,α=90°,點D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點D不在AB上,判斷∠FPG的度數(shù),并證明你的結論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點A旋轉,則PF長度的最大值為 ;PF長度的最小值為 ;
第27題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運1 000件帳篷與乙種貨車裝運800件帳篷所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;
(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運,甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA
與⊙O的另一個交點為E,連結AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,BD、CD、BE分別平分△ABC的內角∠ABC、外角∠ACP、外角∠MBC,以下結論:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠A+2∠BEC=180°.其中正確的結論有_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店經銷某種型號的汽車.已知該型號汽車的進價為15萬元/輛,經銷一段時間后發(fā)現(xiàn):當該型號汽車售價定為25萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛.
(1)當售價為22萬元/輛時,求平均每周的銷售利潤.
(2)若該店計劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,求每輛汽車的售價.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.
(1)分別求甲、乙兩種污水處理器的污水處理效率;
(2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費用分別30元和50元,問該廠每個月(以30天計)需要污水處理費多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com