(2004•三明)如圖,直線TB與△ABC的外接圓相切于點(diǎn)B,AD∥BC,∠BAD=70°,∠ACB=40°則∠TBC=    度.
【答案】分析:根據(jù)AD∥BC,∠ACB=40°,可求得∠DAC=40°,進(jìn)而可得∠BAC的度數(shù),也就是∠TBC的度數(shù).
解答:解:如圖:∵AD∥BC,∠ACB=40°,
∴∠DAC=40°,
∴∠BAC=∠BAD-∠BAC=70°-40°=30°,
∴∠TBC=∠BAC=30°,
故答案為30.
點(diǎn)評(píng):本題考查的是:兩直線平行,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ);弦切角等于它所夾的弧所對(duì)的圓周角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•三明)如圖①是一張眼鏡的照片,兩鏡片下半部分輪廓可以近似看成拋物線形狀.建立如圖②直角坐標(biāo)系,已知左輪廓線端點(diǎn)A、B間的距離為4cm,點(diǎn)A、B與右輪廓線端點(diǎn)D、E均在平行于x軸的直線上,最低點(diǎn)C在x軸上,且與AB的距離CH=1cm,y軸平分BD,BD=2cm.解答下列問題:
(1)求輪廓線ACB的函數(shù)解析式;(寫出自變量x的取值范圍)
(2)由(1)寫出右輪廓線DFE對(duì)應(yīng)的函數(shù)解析式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•三明)如圖①是一張眼鏡的照片,兩鏡片下半部分輪廓可以近似看成拋物線形狀.建立如圖②直角坐標(biāo)系,已知左輪廓線端點(diǎn)A、B間的距離為4cm,點(diǎn)A、B與右輪廓線端點(diǎn)D、E均在平行于x軸的直線上,最低點(diǎn)C在x軸上,且與AB的距離CH=1cm,y軸平分BD,BD=2cm.解答下列問題:
(1)求輪廓線ACB的函數(shù)解析式;(寫出自變量x的取值范圍)
(2)由(1)寫出右輪廓線DFE對(duì)應(yīng)的函數(shù)解析式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2004•三明)如圖①有一個(gè)寶塔,他的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2004•三明)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為點(diǎn)E,點(diǎn)F在AC上從A點(diǎn)向C點(diǎn)運(yùn)動(dòng)(點(diǎn)A、C除外),AF與DC的延長(zhǎng)線相交于點(diǎn)M.
(1)求證:△AFD∽△CFM;
(2)點(diǎn)F在運(yùn)動(dòng)中是否存在一個(gè)位置使△FMD為等腰三角形?若存在,給予證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(03)(解析版) 題型:選擇題

(2004•三明)如圖,PAB、PCD是⊙O的兩條割線,PA=3,AB=5,PC=4,則CD等于( )

A.6
B.2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案