18.如圖,小島A在港口P的南偏東45°方向,距離港口100海里處.甲船從A出發(fā),沿AP方向以10海里/小時的速度駛向港口,乙船從港口P出發(fā),沿北偏東30°方向,以20海里/小時的速度駛離港口.現(xiàn)兩船同時出發(fā),出發(fā)后幾小時乙船在甲船的正北方向?(結(jié)果精確到0.1小時)(參考數(shù)據(jù):$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73)

分析 根據(jù)題意畫出圖形,過點P作PE⊥CD,根據(jù)余弦的定義分別表示出PE,列出方程,解方程即可.

解答 解:設(shè)出發(fā)后x小時乙船在甲船的正北方向.
此時甲、乙兩船的位置分別在點C、D處.
連接CD,過點P作PE⊥CD,垂足為E.則點E在點P的正東方向.
在Rt△CEP中,∠CPE=45°,
∴PE=PC•cos45°,
在Rt△PED中,∠EPD=60°,
∴PE=PD•cos60°,
∴PC•cos45°=PD•cos60°,
∴(100-10x)•cos45°=20x•cos60°.
解這個方程,得x≈4.1,
答:出發(fā)后約4.1小時乙船在甲船的正東方向.

點評 本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標注方向角、靈活運用銳角三角函數(shù)的概念是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算:$\sqrt{4}$-23÷|-2|×cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知在Rt△ABC與Rt△ECD中,∠ACB=∠ECD=90°,CD為Rt△ABC斜邊上的中線,且ED∥BC.
(1)求證:△ABC∽△EDC;
(2)若CE=3,CD=4,求CB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知a、b、c是△ABC的三邊長,試判斷代數(shù)式(a2+b2-c22與4a2b2的大。
(2)已知a、b、c是△ABC的三邊長,且3a3+6a2b-3a2c-6abc=0,則△ABC是什么三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,AD∥BC,∠ABC的平分線BP與∠BAD的平分線AP相交于點P,作PE⊥AB于E,若PE=1.8cm,則AD與BC之間的距離為3.6cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知△ABC≌△DEF,AB=6cm,AD=10cm,CF=5cm,求線段DE與AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.已知⊙O的半徑為3cm,線段OA=5cm,則點A與⊙O的位置關(guān)系是( 。
A.A點在⊙O外B.A點在⊙O上C.A點在⊙O內(nèi)D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.計算
(1)($\frac{1}{2}$-$\frac{3}{4}$-$\frac{1}{8}$)×8.
(2)-14+(-2)÷(-$\frac{1}{3}$)+|-9|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.要使(x-1)0-(x+1)-2有意義,x的取值應(yīng)滿足什么條件?

查看答案和解析>>

同步練習(xí)冊答案