【題目】如圖,將二次函數(shù)y (x2)21的圖像沿y軸向上平移得到一條新的二次函數(shù)圖像,其中A(1,m),B(4,n)平移后對應(yīng)點分別是A′、B′,若曲線AB所掃過的面積為12(圖中陰影部分),則新的二次函數(shù)對應(yīng)的函數(shù)表達(dá)是__________________

【答案】y=0.5(x-2) +5

【解析】∵函數(shù)y=x22+1的圖象過點A1,m),B4,n),m=122+1=1,n=422+1=3A1,1),B43),AACx,BB的延長線于點CC4,1),AC=41=3∵曲線段AB掃過的面積為12(圖中的陰影部分)ACAA′=3AA′=12,AA′=4即將函數(shù)y=x22+1的圖象沿y軸向上平移4個單位長度得到一條新函數(shù)的圖象,∴新圖象的函數(shù)表達(dá)式是y=x22+5故答案為:y=0.5x22+5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

1)(3a28a)+(2a313a2+2a)﹣2a33),其中a=﹣2;

2,其中x=﹣,y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某倉庫有甲、乙、丙三輛運貨車,每輛車只負(fù)責(zé)進貨或出貨,丙車每小時的運輸量最多,乙車每小時的運輸量最少,乙車每小時運6噸,如圖是甲、乙、丙三輛運輸車開始工作后,倉庫的庫存量y(噸)與工作時間x(小時)之間函數(shù)圖象,其中OA段只有甲、丙兩車參與運輸,AB段只有乙、丙兩車參與運輸,BC段只有甲、乙兩車參與運輸.

1)在甲、乙、丙三輛車中,出貨車是   .(直接寫出答案)

2)甲車和丙車每小時各運輸多少噸?

3)由于倉庫接到臨時通知,要求三車在8小時后同時開始工作,但丙車在運送10噸貨物后出現(xiàn)故障而退出,問:8小時后,甲、乙兩車又工作了幾小時,使倉庫的庫存量為8噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天昆明市交警大隊的一輛警車在東西方向的街上巡視,警車從鐘樓A處出發(fā),規(guī)定向東方向為正,當(dāng)天行駛紀(jì)錄如下(單位:千米)

+10,-9,+7,-15,+6,-5+4,-2

1)最后警車是否回到鐘樓A處?若沒有,在鐘樓A處何方,距鐘樓A多遠(yuǎn)?

2)警車行駛1千米耗油0.2升,油箱有油10升,夠不夠?若不夠,途中還需補充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ABBC,連結(jié)對角線AC,點OAC的中點,點E為線段BC上的一個動點,連結(jié)OE,將AOE沿OE翻折得到FOEEFAC交于點G,若EOG的面積等于ACE的面積的,則BE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是斜邊AB的長為3的等腰直角三角形,在ABC內(nèi)作第1個內(nèi)接正方形A1B1D1E1(D1、E1在AB上,A1、B1分別在AC、BC上),再在A1B1C內(nèi)接同樣的方法作第2個內(nèi)接正方形A2B2D2E2,…如此下去,操作n次,則第n個小正方形AnBnDnEn 的邊長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,,

問:(1)將最后一位乘客送到目的地時,小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前某市區(qū)的出租車起步價有五種,分別為9元、12元、13元、15元和18元,不同車型的出租車收費標(biāo)準(zhǔn)不同.其中,最為常見的“薄荷綠”出租車的起步價為3公里9元,若超出3公里,3公里外每公里另收1.5.

(1)如果小明乘“薄荷綠”出租車12公里,那么小明應(yīng)該支付車費多少元?

(2)如果小麗乘“薄荷綠”出租車的費用為34.5元,那么小麗乘車多少公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點,D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

同步練習(xí)冊答案