【題目】
(1)計算: ;
(2)解不等式組: .
【答案】
(1)解:原式=9﹣2+1=8
(2)解: ,
由①得,x<5;由②得,x>3.
∴不等式組的解為3<x<5
【解析】(1)本題涉及零指數(shù)冪、乘方、二次根式化簡3個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.(2)先分別解不等式,再找到共分部分即可.
【考點精析】關于本題考查的零指數(shù)冪法則和一元一次不等式組的解法,需要了解零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】為加快城市群的建設與發(fā)展,在A,B兩城市間新建條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的120km縮短至114km,城際鐵路的設計平均時速要比現(xiàn)行的平均時速快110km,運行時間僅是現(xiàn)行時間的
(1)求建成后的城際鐵路在A,B兩地的運行時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C為⊙O外一點,CA,CD是⊙O的切線,A,D為切點,連接BD,AD.若∠ACD=30°,則∠DBA的大小是( 。
A.15°
B.30°
C.60°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點D.連接OE、AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,PB=9,求⊙O的半徑及tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量學校圍墻外直立電線桿AB的高度,小亮在操場上點C處直立高3m的竹竿CD,然后退到點E處,此時恰好看到竹竿頂端D與電線桿頂端B重合;小亮又在點C1處直立高3m的竹竿C1D1 , 然后退到點E1處,此時恰好看到竹竿頂端D1與電線桿頂端B重合.小亮的眼睛離地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m.
(1)△FDM∽△ , △F1D1N∽△
(2)求電線桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是使用測角儀測量一幅壁畫高度的示意圖,已知壁畫AB的底端距離地面的高度BC=1m,在壁畫的正前方點D處測得壁畫底端的俯角∠BDF=30°,且點D距離地面的高度DE=2m,求壁畫AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以 cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts.
(1)當P異于A、C時,請說明PQ∥BC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,點E在邊BC上,點F在邊CD上.
(1)如圖1,若E是BC的中點,∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com