分析 (1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因為△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可證明△AFE≌△BCA,再根據全等三角形的性質即可證明AC=EF,根據△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形;
(2)直接利用等邊三角形的性質結合平行四邊形的性質得出各邊長即可得出答案.
解答 (1)證明:∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等邊三角形,EF⊥AB,
∴AB=2AF
∴AF=BC,
在Rt△AFE和Rt△BCA中,
$\left\{\begin{array}{l}{AF=BC}\\{AE=AB}\end{array}\right.$,
∴△AFE≌△BCA(HL),
∴AC=EF;
∵△ACD是等邊三角形,
∴∠DAC=60°,AC=AD,
∴∠DAB=∠DAC+∠BAC=90°,
又∵EF⊥AB,
∴EF∥AD,
∵AC=EF,AC=AD,
∴EF=AD,
∴四邊形ADFE是平行四邊形;
(2)解:∵∠BAC=30°,BC=2,∠ACB=90°,
∴AB=AE=4,
∵AF=BF=$\frac{1}{2}$AB=2,
則EF=AD=2$\sqrt{3}$,
故四邊形ADFE的周長為:2(4+2$\sqrt{3}$)=8+4$\sqrt{3}$.
點評 此題主要考查了全等三角形的判定與性質以及等邊三角形的性質和平行四邊形的判定與性質,正確利用全等三角形的性質和等邊三角形的性質證明平行四邊形是解題關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 8cm | B. | 9cm | C. | 10cm | D. | 12cm |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com