【題目】某市每年都舉行希望杯籃球賽,去年初賽階段,共15支隊(duì)伍參賽,每?jī)申?duì)之間都比賽一場(chǎng),下表是去年初賽部分隊(duì)伍的積分榜.

隊(duì)名

比賽場(chǎng)次

勝場(chǎng)

負(fù)場(chǎng)

積分

A

14

10

4

24

B

14

9

5

23

C

14

4

10

18

D

14

0

14

14

(1)去年某隊(duì)的總積分為20分,則該隊(duì)在比賽中勝了多少場(chǎng)?

(2)今年,參賽的隊(duì)伍比去年有所增加,但因場(chǎng)地受限,組委會(huì)決定初賽階段共安排40場(chǎng)比賽,并將參賽隊(duì)伍平均分成4個(gè)小組,各小組每?jī)申?duì)之間都比賽一場(chǎng),求今年比去年增加了多少支隊(duì)伍?

【答案】(1)該隊(duì)勝6場(chǎng);(2)今年比去年增加了5支隊(duì)伍.

【解析】

(1)結(jié)合表格中數(shù)據(jù)得出方程組進(jìn)而得出答案;
(2)根據(jù)題意表示出比賽總場(chǎng)數(shù),進(jìn)而得出方程求出答案.

(1)設(shè)勝一場(chǎng)積x分,負(fù)一場(chǎng)積y分,由表格數(shù)據(jù)中知

,

解得:

設(shè)勝m場(chǎng),則負(fù)(14﹣m)場(chǎng),列方程得:

2m+(14﹣m)=20,

解得:m=6,

答:該隊(duì)勝6場(chǎng);

(2)由題意可得,每個(gè)組比賽場(chǎng)數(shù):40÷4=10場(chǎng),

設(shè)每個(gè)小組有n支隊(duì)伍,列方程得:

n(n﹣1)=10,

解得:n1=5,n2=﹣4(不合題意舍去),

所以5×4﹣15=5(支),

答:今年比去年增加了5支隊(duì)伍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中①等腰三角形底邊的中點(diǎn)到兩腰的距離相等

②如果兩個(gè)三角形全等,則它們必是關(guān)于直線成軸對(duì)稱的圖形

③如果兩個(gè)三角形關(guān)于某直線成軸對(duì)稱,那么它們是全等三角形

④等腰三角形是關(guān)于底邊中線成軸對(duì)稱的圖形

⑤一條線段是關(guān)于經(jīng)過該線段中點(diǎn)的直線成軸對(duì)稱的圖形

正確命題的個(gè)數(shù)是(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊(duì)對(duì)隊(duì)員進(jìn)行定點(diǎn)投籃測(cè)試,每人每天投籃10次,現(xiàn)對(duì)甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個(gè))進(jìn)行統(tǒng)計(jì),結(jié)果如下:

10

6

10

6

8

7

9

7

8

9

經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.

1)求乙進(jìn)球的平均數(shù)和方差;

2)如果綜合考慮平均成績(jī)和成績(jī)穩(wěn)定性兩方面的因素,從甲、乙兩名隊(duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O 中,AB 是直徑,點(diǎn) D 是⊙O 上一點(diǎn),點(diǎn) C 是弧 AD 的中點(diǎn),CEAB 于點(diǎn) E,過點(diǎn) D 的切線交 EC 的延長(zhǎng)線于點(diǎn) G,連接 AD,分別交 CE,CB 于點(diǎn) P,Q,連接 AC.

(1)求證:GP=GD.

(2)下列結(jié)論①∠BAD=ABC;點(diǎn) P ACQ 的外心,其中正確結(jié)論是 .(只需填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,5)、B(﹣1,0)、C(﹣3,2).

(1)請(qǐng)畫出將△ABC向右平移4個(gè)單位得到的△A1B1C1

(2)請(qǐng)畫出將△ABC關(guān)于點(diǎn)O成中心對(duì)稱的△A2B2C2

(3)請(qǐng)直接寫出△A1B1C1△A2B2C2的對(duì)稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AC的表達(dá)式為yx8,點(diǎn)P從點(diǎn)A開始沿AO向點(diǎn)O1個(gè)單位/s的速度移動(dòng),點(diǎn)Q從點(diǎn)O開始沿OC向點(diǎn)C2個(gè)單位/s的速度移動(dòng).如果PQ兩點(diǎn)分別從點(diǎn)A,O同時(shí)出發(fā),經(jīng)過幾秒能使PQO的面積為8個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DBC上的點(diǎn),且ABAC,BDAD,ACDC,那么∠B_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1當(dāng)k=1,b=1時(shí),拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個(gè)單位長(zhǎng)度得到直線r,則無論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個(gè)交點(diǎn);

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點(diǎn),過點(diǎn)PPQy軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),

求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2,0)、(0,4),P△AOB外接圓⊙C上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為________

查看答案和解析>>

同步練習(xí)冊(cè)答案