【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實數(shù));⑤點(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是該拋物線上的點,則y1<y2<y3 , 正確的個數(shù)有(
A.4個
B.3個
C.2個
D.1個

【答案】B
【解析】解:∵拋物線的對稱軸為直線x=﹣ =﹣2, ∴4a﹣b=0,所以①正確;
∵與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,
∴由拋物線的對稱性知,另一個交點在(﹣1,0)和(0,0)之間,
∴拋物線與y軸的交點在y軸的負半軸,即c<0,故②正確;
∵由②知,x=﹣1時y>0,且b=4a,
即a﹣b+c=a﹣4a+c=﹣3a+c>0,
所以③正確;
由函數(shù)圖象知當x=﹣2時,函數(shù)取得最大值,
∴4a﹣2b+c≥at2+bt+c,
即4a﹣2b≥at2+bt(t為實數(shù)),故④錯誤;
∵拋物線的開口向下,且對稱軸為直線x=﹣2,
∴拋物線上離對稱軸水平距離越小,函數(shù)值越大,
∴y1<y3<y2 , 故⑤錯誤;
故選:B.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識可以得到問題的答案,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。欢魏瘮(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:已知方程a22a1=0,12bb2=0ab≠1,求的值.

解:由a22a1=012bb2=0,

可知a≠0b≠0,

又∵ab≠1,.

12bb2=0可變形為

,

根據(jù)a22a1=0的特征.

、是方程x22x1=0的兩個不相等的實數(shù)根,

,即.

根據(jù)閱讀材料所提供的方法,完成下面的解答.

已知:3m27m2=0,2n2+7n3=0mn≠1,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點EEF∥AB,交BC于點F

1)求證:四邊形DBFE是平行四邊形;

2)當△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上一點(P不與點B、D重合),PEBC于點E,PFCD于點F,連接EF給出下列五個結(jié)論:APEF;APEF;僅有當DAP45°67.5°時,APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個.

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是(
A.①③
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,長方形紙片ABCD的長AD9cm,寬AB3cm,將其折疊,使點D與點B重合.

求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c過點(﹣1,0),且對稱軸為直線x=1,有下列結(jié)論: ①abc<0;②10a+3b+c>0;③拋物線經(jīng)過點(4,y1)與點(﹣3,y2),則y1>y2;④無論a,b,c取何值,拋物線都經(jīng)過同一個點(﹣ ,0);⑤am2+bm+a≥0,其中所有正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 是關于 的方程 的兩個不相等的實數(shù)根.
(1)求實數(shù) 的取值范圍;
(2)已知等腰 的一邊長為7,若 、 恰好是 另外兩邊長,求這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中描出下列各點,并將各組內(nèi)的這些點依次用線段連接起來.

,;②,,.

觀察所描出的圖形,解答下列問題:

1)坐標軸上的點有_________,軸上的點_______坐標等于零,軸上的點_____坐標等于零.

2)線段軸_______,點和點_______坐標相同,線段上其他點_____坐標相同.

3)線段軸_______,點和點_______坐標相同,線段上其他點_____坐標相同.

查看答案和解析>>

同步練習冊答案