【題目】如圖,在梯形ABCD中,AB∥CD, CD=6,BC=4,∠ABD =∠C,P是CD上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)C點(diǎn)D重合),且滿(mǎn)足條件:∠BPE =∠C, 交BD于點(diǎn)E.
(1) 求證:△BCP∽△PDE;
(2)如果CP= x , BE=y,求y與x之間的函數(shù)關(guān)系式;
(3)P點(diǎn)在運(yùn)動(dòng)過(guò)程中,△BPE能否成為等腰三角形,若能,求 x的值 ,若不能,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2) (3)當(dāng)x=2或 時(shí),△BPE為等腰三角形
【解析】(1)根據(jù)已知條件先得出∠BPD =∠PBC+∠C,然后求出∠PBC =∠EPD即可得證;
(2)由(1)的結(jié)論得出,把CP= x ,,BE=y,BD=BC=4,CD=6代入此式即可求出y與x之間的函數(shù)關(guān)系式;(3)分當(dāng)BP=PE,則△BCP≌△PDE,求出x,當(dāng)BE=PE,證出△BEP∽△CBD求出x;當(dāng)BP=BE,可推出∠BPE=∠PEB>∠CDB,矛盾.
解:(1)證明:因?yàn)?/span>AB∥DC,所以∠ABD=∠BDC
因?yàn)椤?/span>ABD =∠C,所以∠BDC =∠C
因?yàn)椤?/span>BPD =∠BPE+∠EPD
∠BPD =∠PBC+∠C
又因?yàn)椤?/span>BPE =∠C
所以∠PBC =∠EPD
所以△BCP∽△PDE
(2) 因?yàn)椤?/span>BCP∽△PDE
所以,
因?yàn)?/span>CP= x , BE=y,BD=BC=4,CD=6
所以DP= 6 - x , DE= 4 – y
所以,
所以
(3)(ⅰ)若BP=PE,則△BCP≌△PDE,
所以PD=BC=4,所以x=2
(ⅱ)若BE=PE,則∠BPE=∠PBE=∠C=∠CDB,
所以△BEP∽△CBD,PE:PB=BC:CD=2:3
又因?yàn)?/span>PD:BC=PE:PB
即(6-x):4=2:3,
所以x=
(ⅲ)若BP=BE,則∠BPE=∠PEB>∠CDB,矛盾.
所以,當(dāng)x=2或時(shí),△BPE為等腰三角形.
“點(diǎn)睛”此題考查了相似三角形的判定(平行于三角形一邊的直線截另兩邊所得三角形與原三角形相似)與性質(zhì)(相似三角形的對(duì)應(yīng)邊成比例).此題很簡(jiǎn)單,解題時(shí)要注意細(xì)心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將點(diǎn)A(4,3)向 _______個(gè)單位長(zhǎng)度后,其坐標(biāo)為(﹣1,3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一條拋物線經(jīng)過(guò)A(0,3),B(4,6)兩點(diǎn),對(duì)稱(chēng)軸是x=.
(1)求這條拋物線的關(guān)系式.
(2)證明:這條拋物線與x軸的兩個(gè)交點(diǎn)中,必存在點(diǎn)C,使得對(duì)x軸上任意點(diǎn)D都有AC+BC≤AD+BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一位籃球運(yùn)動(dòng)員在離籃圈水平距離為4m處跳起投籃,球沿一條拋物線運(yùn)行,當(dāng)球運(yùn)行的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心離地面距離為3.05m.
(1)建立如圖所示的直角坐標(biāo)系,求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若該運(yùn)動(dòng)員身高1.8m,這次跳投時(shí),球在他頭頂上方0.25m處出手.問(wèn):球出手時(shí),他跳離地面多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線y=kx+2與x軸的正半軸相交于點(diǎn)A(t,0)、與y軸相交于點(diǎn)B,點(diǎn)C在第三象限內(nèi),且AC⊥AB,AC=2AB.
(1)當(dāng)t=1時(shí),求直線BC的表達(dá)式;
(2)點(diǎn)C落在直線:y=-3x-10上,求直線CA的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)有一點(diǎn)M,且M到x軸的距離為1,到y軸的距離為2,則點(diǎn)M的坐標(biāo)不可能是( )
A. (1,-2)B. (-2,1)C. (2,-1)D. (2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,假命題是( )
A. 直角三角形的兩個(gè)銳角互余
B. 三角形的一個(gè)外角大于任何一個(gè)內(nèi)角
C. 有一個(gè)角為60°的等腰三角形是等邊三角形
D. 三內(nèi)角之比為1︰2︰3的三角形是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形內(nèi)有一點(diǎn),它到三角形三邊的距離都相等,同時(shí)與三角形三個(gè)頂點(diǎn)的距離也相等,則這個(gè)三角形一定是( )
A. 等腰三角形 B. 等腰直角三角形
C. 等邊三角形 D. 以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com