如圖,在等腰三角形ABC中,AC=BC=5cm,AB=6cm,則等腰△ABC的面積為( 。ヽm2
分析:利用等腰三角形的頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高的重合的性質(zhì),勾股定理求出三角形的高,再利用三角形面積公式求解.
解答:解:
過(guò)C作CD⊥AB于D,
在等腰△ABC中,
∵BC=AC=5cm,BC=6cm,
∴AD=BD=3cm,
∴AD=
AC2-AD2
=4cm,
∴S△ABC=
1
2
AB•CD=
1
2
×6cm×4cm=12cm2,
故選A.
點(diǎn)評(píng):此題主要考查勾股定理及等腰三角形的高和面積的求法.關(guān)鍵是求出等腰三角形的高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:如圖,在等腰三角形ABC中,∠A=90°,∠ABC的平分線(xiàn)BD與AC交于點(diǎn)D,DE⊥BC于點(diǎn)E.求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春)感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線(xiàn)AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線(xiàn)段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求證:△ABD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線(xiàn),∠ABC的平分線(xiàn)BG,交AD于點(diǎn)E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線(xiàn)交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC,∠A=40°,線(xiàn)段AB的垂直平分線(xiàn)交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE,則∠CBE等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案