【題目】某蔬菜專業(yè)戶試種植了一種緊俏蔬菜(都能賣(mài)出),其中每千克的成本9/千克的基礎(chǔ)上,還有一些上浮.若浮動(dòng)價(jià)(元/)與需求量(千克)成反比,比例系數(shù)為30.市場(chǎng)連續(xù)四天調(diào)查發(fā)現(xiàn),蔬菜售價(jià)(元/)與市場(chǎng)需求量有如下關(guān)系:

需求量

50

40

30

20

蔬菜售價(jià)(元/

10

15

20

25

1)直接寫(xiě)出每千克的成本與需求量的關(guān)系式_________

2)求的關(guān)系式;

3)當(dāng)某天的利潤(rùn)率達(dá)到時(shí),求這天的需求量;

4)求需求量是多少千克時(shí),利潤(rùn)達(dá)到最大值,最大值是多少?

【答案】1;(2;(330千克或4千克;(4)當(dāng)26千克時(shí)取得最大利潤(rùn)是308

【解析】

1)先根據(jù)題意表示出浮動(dòng)價(jià)(元/)與需求量(千克)的反比例函數(shù)關(guān)系再加上成本價(jià)9元即可.

2)觀察圖表可發(fā)現(xiàn)蔬菜售價(jià)(元/)與市場(chǎng)需求量為一次函數(shù)關(guān)系,設(shè)其解析式,代入兩點(diǎn)解答即可.

3)利潤(rùn)率達(dá)到,其關(guān)系表示即為,將兩函數(shù)表達(dá)式代入轉(zhuǎn)化為關(guān)于的方程解答即可.

4)將利潤(rùn)表示為關(guān)于市場(chǎng)需求量的二次函數(shù)關(guān)系式,用配方法求最值即可.

解:(1

2)觀察發(fā)現(xiàn)需求量每減少10千克,蔬菜售價(jià)會(huì)增加5/,是一次函數(shù)關(guān)系

設(shè),把代入得

解得:

3)法1:每天的利潤(rùn)

每天的總成本:

當(dāng)時(shí),

整理得:

2:∵利潤(rùn)率

整理得,

,

經(jīng)檢驗(yàn),是原方程的解

4

因?yàn)?/span>

所以函數(shù)有最大值,當(dāng)時(shí)取得最大利潤(rùn),為308元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)心帳篷集團(tuán)的總廠和分廠分別位于甲、乙兩市,兩廠原來(lái)每周生產(chǎn)帳篷共9千頂,現(xiàn)某地震災(zāi)區(qū)急需帳篷14千頂,該集團(tuán)決定在一周內(nèi)趕制出這批帳篷.為此,全體職工加班加點(diǎn),總廠和分廠一周內(nèi)制作的帳篷數(shù)分別達(dá)到了原來(lái)的1.6倍、1.5倍,恰好按時(shí)完成了這項(xiàng)任務(wù).

(1)在趕制帳篷的一周內(nèi),總廠和分廠各生產(chǎn)帳篷多少千頂?

(2)現(xiàn)要將這些帳篷用卡車(chē)一次性運(yùn)送到該地震災(zāi)區(qū)的兩地,由于兩市通住兩地道路的路況不同,卡車(chē)的運(yùn)載量也不同.已知運(yùn)送帳篷每千頂所需的車(chē)輛數(shù)、兩地所急需的帳篷數(shù)如下表:

每千頂帳篷

所需車(chē)輛數(shù)

甲市

4

7

乙市

3

5

所急需帳篷數(shù)(單位:千頂)

9

5

請(qǐng)?jiān)O(shè)計(jì)一種運(yùn)送方案,使所需的車(chē)輛總數(shù)最少.說(shuō)明理由,并求出最少車(chē)輛總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y+bx+cx軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OC2OA2,點(diǎn)D是直線BC下方拋物線上一動(dòng)點(diǎn).

1)求出拋物線的解析式;

2)連接ADBC,ADBC于點(diǎn)E,當(dāng)SABESBDE54時(shí),求點(diǎn)D的坐標(biāo);

3)點(diǎn)Fy軸上的一點(diǎn),在(2)的條件下,求DF+OF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在推進(jìn)鄭州市城鄉(xiāng)生活垃圾分類的行動(dòng)中,某社區(qū)對(duì)居民掌握垃圾分類知識(shí)的情況進(jìn)行調(diào)査.其中,兩小區(qū)分別有1000名居民參加了測(cè)試,社區(qū)從中各隨機(jī)抽取50名居民成績(jī)進(jìn)行整理得到部分信息:

(信息一)小區(qū)50名居民成績(jī)的頻數(shù)直方圖如下(每一組含前一個(gè)邊界值,不含后一個(gè)邊界值)

(信息二)上圖中,從左往右第四組的成績(jī)?nèi)缦拢?/span>

75

75

79

79

79

79

80

80

81

82

82

83

83

84

84

84

(信息三)兩小區(qū)各50名居民成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺)

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

方差

75.1

79

40%

277

75.1

77

76

45%

211

根據(jù)以上信息,回答下列問(wèn)題:

1)求小區(qū)50名居民成績(jī)的中位數(shù).

2)請(qǐng)估計(jì)小區(qū)1000名居民成績(jī)能超過(guò)平均數(shù)的人數(shù).

3)請(qǐng)盡量從多個(gè)角度(至少三個(gè)),選擇合適的統(tǒng)計(jì)量分析,兩小區(qū)參加測(cè)試的居民掌握垃圾分類知識(shí)的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)的坐標(biāo)為,點(diǎn)分別是某函數(shù)圖象與軸、軸的交點(diǎn),點(diǎn)是此圖象上的一動(dòng)點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)為,且之間滿足關(guān)系:,則正確結(jié)論的序號(hào)是(

;②;③當(dāng)時(shí),;④的最大值是6

A.①②③B.③④C.①②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過(guò)點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知第一象限內(nèi)的點(diǎn)在反比例函數(shù)y的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y的圖象上,連接、,若,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是反比例函數(shù)的圖象上的一點(diǎn),過(guò)點(diǎn)軸,垂足為.點(diǎn)軸正半軸上的一點(diǎn),連接、,延長(zhǎng)軸于點(diǎn).若,且的面積為18,則的值是(

A.6B.-6C.12D.-12

查看答案和解析>>

同步練習(xí)冊(cè)答案