【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F,G分別在邊AB,AD上,則EF的長為
A. B. C. D.
【答案】A
【解析】分析: 連接BE,BD,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,在Rt△BCE中計(jì)算出BE=,接著證明BE⊥AB, 利用折疊的性質(zhì)得到EF=AF.,設(shè)EF=AF=x, FG垂直平分AE,所以在Rt△BEF中利用勾股定理列方程求解即可.
詳解: 連接BE,BD,如圖,
∵四邊形ABCD為菱形,∠A=60°,
∴△BDC為等邊三角形, ∠C=∠A=60°,
∴∠CBE=90°-60°=30°.
∵E點(diǎn)為CD的中點(diǎn),
∴CE=DE=1,BE⊥CD.
在Rt△BCE中,
BC=2CE=2,
BE= .
∵AB∥CD,
∴BE⊥AB.
∵菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,
∴EF=AF.
設(shè)EF=AF=x,則BF=2-x,
在Rt△BEF中,
,
解得 .
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn) O 按如圖方式疊放在一起.
( 1 ) 如圖 1 , 若∠ BOD=35° , 則∠ AOC= ; 若∠AOC=135°, 則∠BOD= ;
(2)如圖2,若∠AOC=140°,則∠BOD= ;
(3)猜想∠AOC 與∠BOD 的大小關(guān)系,并結(jié)合圖1說明理由.
(4)三角尺 AOB 不動,將三角尺 COD 的 OD 邊與 OA 邊重合,然后繞點(diǎn) O 按順時(shí)針或逆時(shí)針方向任意轉(zhuǎn)動一個角度,當(dāng)∠A OD(0°<∠AOD<90°)等于多少度時(shí),這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD 角度所有可能的值,不用說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】題目:在同一平面上,若∠AOB=75°,∠BOC=15°,求∠AOC的度數(shù).
下面是七(2)班馬小虎同學(xué)的解題過程:
解:根據(jù)題意畫出圖形,如圖所示,
∵∠AOC=∠AOB-∠BOC=75°-75°=60°
∴∠AOC=60°
若你是老師,會判馬小虎滿分嗎?若會,說明理由;若不會,請指出錯誤之處,并給出你認(rèn)為正確的解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的解析表達(dá)式為:y=-3x+3,且與x軸交于點(diǎn)D,直線經(jīng)過點(diǎn)A,B,直線,交于點(diǎn)C.
(1)求點(diǎn)D的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)求△ADC的面積;
(4)在直線上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP的面積是△ADC面積的2倍,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程mx2+(3﹣m)x﹣3=0(m為實(shí)數(shù),m≠0).
(1) 試說明:此方程總有兩個實(shí)數(shù)根.
(2) 如果此方程的兩個實(shí)數(shù)根都為正整數(shù),求整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點(diǎn),連接BD并延長至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點(diǎn)E是BC的中點(diǎn).將紙片沿直線AE折疊,點(diǎn)B落在四邊形AECD內(nèi),記為點(diǎn)B′.則線段B′C= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com