【題目】對于任何整數(shù),多項式(n+5)2-n2一定是( )

A. 2的倍數(shù) B. 5的倍數(shù) C. 8的倍數(shù) D. n的倍數(shù)

【答案】B

【解析】

利用平方差對多形式進行因式分解,即可解題.

解:∵(n+5)2-n2=n+5+n)(n+5-n=5(2n+5),

由題可知n為整數(shù),

∴多項式(n+5)2-n2一定是5的倍數(shù),

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線l1;y=ax2+bx+c(a0)經(jīng)過原點,與x軸的另一個交點為B(4,0),點A為頂點,且直線OA的解析式為y=x.

(1)如圖1,求拋物線l1的解析式;

(2)如圖2,將拋物線l1繞原點O旋轉(zhuǎn)180°,得到拋物線l2,l2與x軸交于點B′,頂點為A′,點P為拋物線l1上一動點,連接PO交l2于點Q,連接PA、PA′、QA′、QA.

請求:平行四邊形PAQA′的面積S與P點橫坐標(biāo)x(2x4)之間的關(guān)系式;

(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點H,使得HB=HA′?若存在,請求出點H的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,牧童在A處放牛,其家在C處,A、C到河岸L的距離分別為AB=2km,CD=4km且,BD=8km.

(1)牧童從A處將牛牽到河邊P處飲水后再回到家C,試確定P在何處,所走路程最短?請在圖中畫出飲水的位置(保留作圖痕跡),
不必說明理由.
(2)求出(1)中的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列添括號錯誤的是( )

A. 3-4x=-(4x-3)

B. (a+b)-2a-b=(a+b)-(2a+b)

C. -x2+5x-4=-(x2-5x+4)

D. -a2+4a+a3-5=-(a2-4a)-(a3+5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0.
(1)求A、B兩點的對應(yīng)的數(shù)a、b;
(2)點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1= x﹣8的解.
①求線段BC的長;
②在數(shù)軸上是否存在點P,使PA+PB=BC?求出點P對應(yīng)的數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程(a+1x2+2x10是一元二次方程,則a的取值范圍是( 。

A.a1B.a>﹣1C.a<﹣1D.a≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m是方程x23x+10的一個根,求(m32+m+2)(m2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,二次函數(shù)y=﹣2x+321,下列判斷正確的是( 。

A.其圖象的開口向上

B.其圖象的對稱軸為直線x3

C.其最小值為﹣1

D.當(dāng)x<﹣4時,yx的增大而增大

查看答案和解析>>

同步練習(xí)冊答案