【題目】如圖三角形ABC是圓O的內(nèi)接正三角形,弦EF經(jīng)過(guò)BC邊的中點(diǎn)D,且EF平行AB,若AB等于6,則EF等于________.

【答案】

【解析】

設(shè)ACEF交于點(diǎn)G,由于EFAB,且DBC中點(diǎn),易得DG是△ABC的中位線,即DG=3;易知△CDG是等腰三角形,可過(guò)CAB的垂線,交EFM,交ABN;然后證DE=FG,根據(jù)相交弦定理得BDDC=DEDF,而BD、DC的長(zhǎng)易知,DF=3+DE,由此可得到關(guān)于DE的方程,即可求得DE的長(zhǎng),EF=DF+DE=3+2DE,即可求得EF的長(zhǎng);

解:如圖,過(guò)CCNABN,交EFM,則CMEF,

根據(jù)圓和等邊三角形的性質(zhì)知:CN必過(guò)點(diǎn)O,

EFAB,DBC的中點(diǎn),

DG是△ABC的中位線,

DG=AB=3;

∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,

∴△CGD是等邊三角形,

CMDG,

DM=MG

OMEF,

由垂徑定理得:EM=MF,

DE=GF,

∵弦BCEF相交于點(diǎn)D,

BD×DC=DE×DF,

DE×(DE+3)=3×3

解得DE=(舍去);

EF=3+2×=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條弧經(jīng)過(guò)一個(gè)多邊形相鄰兩邊中點(diǎn),并且該弧上所有點(diǎn)都在該多邊形的內(nèi)部或邊上,則稱該弧為此兩邊中點(diǎn)連線的EVA。纾瑘D1中,在ABC中,DE分別是ABC兩邊的中點(diǎn),如果上的所有點(diǎn)都在ABC的內(nèi)部或邊上,則稱DE的一條EVA。

1)如圖2,在RtABC中,∠C90°,ACBC4,D,E分別是BC,AC的中點(diǎn),畫(huà)出DE的最長(zhǎng)的EVA,并直接寫(xiě)出此時(shí)的長(zhǎng);

2)在平面直角坐標(biāo)系中,已知點(diǎn)A0,4),B0,0),C4t,0)(t0),在ABC中,D,E分別是AB,AC的中點(diǎn).

①若t1,求DEEVA所在圓的圓心P的縱坐標(biāo)m的取值范圍;

②若在ABC中存在一條DEEVA,使得所在圓的圓心PABC的內(nèi)部或邊上,直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,C、D⊙O上異于AB的兩點(diǎn),連接CD,過(guò)點(diǎn)CCE⊥DB,交DB的延長(zhǎng)線于點(diǎn)E

(1)連接AC、AD,求證:∠DAC+∠ACE=180°

(2)∠ABD=2∠BDC,求證:CE⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與軸交于點(diǎn),與軸的交點(diǎn)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線.下列結(jié)論:

;②;③;④;⑤.

其中正確結(jié)論有 __________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A-2-5﹚,C5n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D

(1) 求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2) 連接OA,OC.求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )

A.石頭、剪刀、布的游戲中,小明隨機(jī)出的是剪刀

B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)BBNMPDC于點(diǎn)N.

(1)求證:AD2=DPPC;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊CD(不與點(diǎn)C,D重合),連接AE,BD交于點(diǎn)F.

1)若點(diǎn)ECD中點(diǎn),AB2,求AF的長(zhǎng).

2)若AFB2,求的值.

3)若點(diǎn)G在線段BF上,且GF2BG,連接AG,CG,設(shè)x,四邊形AGCE的面積為,ABG的面積為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:的直徑,的切線,上一動(dòng)點(diǎn),若,,則的面積的最小值是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案