【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
【答案】。
【解析】試題分析:根據(jù)矩形的性質(zhì)得∠B=∠D=∠BAD=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′=∠D=90°,∠4=α,利用對(duì)頂角相等得到∠1=∠2=110°,再根據(jù)四邊形的內(nèi)角和為360°可計(jì)算出∠3=70°,然后利用互余即可得到∠α的度數(shù).
解:如圖,
∵四邊形ABCD為矩形,
∴∠B=∠D=∠BAD=90°,
∵矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到矩形AB′C′D′,
∴∠D′=∠D=90°,∠4=α,
∵∠1=∠2=110°,
∴∠3=360°﹣90°﹣90°﹣110°=70°,
∴∠4=90°﹣70°=20°,
∴∠α=20°.
故答案為:20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
某中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地校參加社會(huì)實(shí)踐活動(dòng).設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量 | 租金(元) | |
A | x | 45x | 400x |
B | 5﹣x |
|
|
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設(shè)置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當(dāng)x每增加1時(shí),y如何變化?
(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;
(3)按照上表所示的規(guī)律,某一排可能有90個(gè)座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的門票價(jià)格如下表所示:
某校九年級(jí)甲、乙兩個(gè)班共100多人去該公園舉行畢業(yè)聯(lián)歡活動(dòng),其中甲班有50多人,乙班不足50人,如果以班為單位分別買門票,兩個(gè)班一共應(yīng)付920元;如果兩個(gè)班聯(lián)合起來作為一個(gè)團(tuán)體購票,一共要付515元,問甲、乙兩班分別有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn) O 為坐標(biāo)原點(diǎn),點(diǎn) A 在 x 軸負(fù)半軸上,點(diǎn) B、C 分別在 x 軸、y 軸正半軸上,且 OB=2OA,OB﹣OC=OC﹣OA=2.
(1)求點(diǎn) C 的坐標(biāo);
(2)點(diǎn) P 從點(diǎn) A 出發(fā)以每秒 1 個(gè)單位的速度沿 AB 向點(diǎn) B 勻速運(yùn)動(dòng),同時(shí)點(diǎn) Q 從點(diǎn) B 出發(fā) 以每秒 3 個(gè)單位的速度沿 BA 向終點(diǎn) A 勻速運(yùn)動(dòng),當(dāng)點(diǎn) Q 到達(dá)終點(diǎn) A 時(shí),點(diǎn) P、Q 均停止運(yùn) 動(dòng),設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為 t 秒(t>0),線段 PQ 的長度為 y,用含 t 的式子表示 y,并寫出 相應(yīng)的 t 的范圍;
(3)在(2)的條件下,過點(diǎn) P 作 x 軸的垂線 PM,PM=PQ,是否存在 t 值使點(diǎn) O 為 PQ 中 點(diǎn)?若存在求 t 值并求出此時(shí)三角形 CMQ 的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長均為1,四邊形ABCD的四個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)(小正方形的頂點(diǎn)叫格點(diǎn))上,連接BD.
(1)利用格點(diǎn)在圖中畫出△ABD中AD邊上的高,垂足為H.
(2)①畫出將△ABD先向右平移2格,再向上平移2格得到的△A1B1D1;
②平移后,求線段AB掃過的部分所組成的封閉圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長AE交BC的延長線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com