【題目】如圖,已知AD是等腰△ABC底邊上的高,且tanBAC上有一點(diǎn)E,滿(mǎn)足AECE=2:3.那么tan∠ADE的值是_____

【答案】

【解析】

解:作EF⊥ADF,根據(jù)△ABC為等腰三角形可得∠B=∠C,從而求出tanC= tanB,設(shè)AD=3t,DC=4t,利用勾股定理求出AC=5t,再根據(jù)AE:CE=2:3,進(jìn)而表示出AE=2t,根據(jù)平行得到△AEF∽△ACD,再根據(jù)相似的圖形對(duì)應(yīng)邊成比例表示出FD,EF,進(jìn)而在Rt△FDE,進(jìn)而可得tan∠ADE.

解:作EF⊥ADF,如圖,

∵△ABC為等腰三角形,AD為高,

∴∠B=∠C,

tanB

∴tanC= tanB=

∴可設(shè)AD=3t,DC=4t,

∴AC==5t

∵AE:CE=2:3,

∴AE=2t,

∵EF⊥AD,ADBC邊上的高

∴EF∥CD,

∴△AEF∽△ACD,

=====

∴EF=t,AF=t

∴FD=AD-AF= AF=t,

Rt△DEF中,

tan∠FDE==

∴tan∠ADE=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,, 的中點(diǎn).點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng);點(diǎn)同時(shí)以每秒3個(gè)單位長(zhǎng)度的速度從 點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).點(diǎn)停止運(yùn)動(dòng)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間秒時(shí),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.的值為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PB為⊙O的切線(xiàn),點(diǎn)B為切點(diǎn),直線(xiàn)PO交⊙O于點(diǎn)E,F,過(guò)點(diǎn)BPO的垂線(xiàn)BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF,

(1)求證:直線(xiàn)PA為⊙O的切線(xiàn);

(2)若BC=6,tanF,求cosACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD的四個(gè)內(nèi)角的平分線(xiàn)分別相交于點(diǎn)E、FG、H,連接AC.若EF=2,FG=GC=5,則AC的長(zhǎng)是( 。

A. 12 B. 13 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線(xiàn)CD剪開(kāi),得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開(kāi)始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′CDE,D′C′CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE△EFC′是否全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子里裝有紅、黃、藍(lán)三種顏色的球(除顏色以外,其余都相同),其中紅球2個(gè),黃球2個(gè),從中隨機(jī)摸出一個(gè)球是藍(lán)色球的概率為

(1)求袋子里藍(lán)色球的個(gè)數(shù);

(2)甲、乙兩人分別從袋中摸出一個(gè)球(不放回),求摸出的兩個(gè)球中一個(gè)是紅球一個(gè)是黃球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)初中組織了“英語(yǔ)手抄報(bào)”征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按AB、CD四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)抽取了_____份作品;

(2)此次抽取的作品中等級(jí)為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共征集到600份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(1)班同學(xué)為了解2015年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,

月均用水量x(t)

頻數(shù)(戶(hù))

頻率

0<x≤5

6

0.12

5<x≤10

m

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

n

60≤x<70

2

0.04

請(qǐng)解答以下問(wèn)題:

(1)求出嗎、M,n的值,并把頻數(shù)分布直方圖補(bǔ)充完整;

(2)若該小區(qū)有1000戶(hù)家庭,求該小區(qū)月均用水量超過(guò)10t的家庭大約有多少戶(hù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案