【題目】如圖,在矩形ABCD中,點EF在對角線BD上,BEDF.請你判斷:AECF的關系,并加以證明

【答案】AECF相等且平行;或相等且共線.理由詳見解析

【解析】

AECF的關系分為數(shù)量關系和位置關系兩種情況.由平行四邊形的性質(zhì)得出AD=CD,∠ABE=CDF,結(jié)合BE=DF可證明ABE≌△CDF,根據(jù)全等三角形的性質(zhì)可得出結(jié)論.

解:AECF相等且平行;或相等且共線.理由如下:

1)數(shù)量關系:AECF

∵四邊形ABCD是矩形,

ABCD,∠ABE=∠CDF,

在△ABE和△CDF中,

,

∴△ABE≌△CDFSAS).

AECF

2)當點E與點F不在BD的中點時,AEFC

∵△ABE≌△CDF,

∴∠AEB=∠CFD

∴∠AED=∠CFB

AECF

3)當點E和點FBD的中點時,AECF共線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸交于點軸交于點二次函數(shù)的圖象經(jīng)過兩點,且與軸的負半軸交于點

求二次函數(shù)的解析式及點的坐標.

是線段上的一動點,動點在直線下方的二次函數(shù)圖象上.設點的橫坐標為.過點于點求線段的長關于的函數(shù)解析式,并求線段的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E、F分別是ADBC的中點,分別連接BE、DF、BD

1)求證:△AEB≌△CFD;

2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過點,與軸交于另一點,且對稱軸是直線

1)求該二次函數(shù)的解析式;

2)若上的一點,作,當面積最大時,求的長;

3軸上的點,過軸與拋物線交于,過軸于,當以為頂點的三角形與以為頂點的三角形相似時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ykx4k+4與拋物線yx2x交于A、B兩點.

1)直線總經(jīng)過定點,請直接寫出該定點的坐標;

2)點P在拋物線上,當k=﹣時,解決下列問題:

在直線AB下方的拋物線上求點P,使得△PAB的面積等于20;

連接OA,OB,OP,作PCx軸于點C,若△POC和△ABO相似,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售部為了調(diào)動銷售員的積極性,決定實行目標管理,根據(jù)目標完成的情況對銷售員進行適當?shù)莫剟?/span>.為了確定一個適當?shù)脑落N售目標,該公司統(tǒng)計了銷售部每位銷售員在某月的銷售額(單位:萬元),并將結(jié)果繪制成如圖所示的統(tǒng)計圖.

1 2

1)補全如圖1所示的統(tǒng)計圖;

2)月銷售額在 萬元的人數(shù)最多,該公司銷售部人均月銷售額是 萬元;

3)若想讓一半左右的銷售員都能達到銷售目標,你認為月銷售額定為多少合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣12)、B2,b)兩點,與y軸相交于點C

1)求m,n的值;

2)若點D與點C關于x軸對稱,求△ABD的面積;

3)在坐標軸上是否存在異于D點的點P,使得SPAB=SDAB?若存在,直接寫出P點坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計,結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

同步練習冊答案