【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?

【答案】(1)在起始的西的位置5km處;(23.4L;(354

【解析】

1)先將這幾個(gè)數(shù)相加,若和為正,則在出發(fā)點(diǎn)的東方;若和為負(fù),則在出發(fā)點(diǎn)的西方;

2)將這幾個(gè)數(shù)的絕對(duì)值相加,再乘以耗油量,即可得出答案;

3)不超過3km的按8元計(jì)算,超過3km的在8元的基礎(chǔ)上,再加上超過部分乘以1.2元,即可求解.

1

所以小李在起始的西的位置

2

(升)

答:出租車共耗油3.4升.

3(元)

答:小李這天上午共得車費(fèi)54元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y=ax2+bx﹣ (a≠0)經(jīng)過點(diǎn)A(1,0)和B(﹣3,0).
(1)求拋物線C1的解析式,并寫出其頂點(diǎn)C的坐標(biāo).
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時(shí)得到拋物線C2 , 此時(shí)點(diǎn)A,C分別平移到點(diǎn)D,E處.設(shè)點(diǎn)F在拋物線C1上且在x軸的上方,若△DEF是以EF為底的等腰直角三角形,求點(diǎn)F的坐標(biāo).

(3)如圖2,在(2)的條件下,設(shè)點(diǎn)M是線段BC上一動(dòng)點(diǎn),EN⊥EM交直線BF于點(diǎn)N,點(diǎn)P為線段MN的中點(diǎn),當(dāng)點(diǎn)M從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí):①tan∠ENM的值如何變化?請(qǐng)說明理由;②點(diǎn)M到達(dá)點(diǎn)C時(shí),直接寫出點(diǎn)P經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,DAB上一點(diǎn),DFAC于點(diǎn)E,AEEC,DEEF,則下列說法中:①∠ADEEFC;②∠ADEECFFEC180°;③∠BBCF180°;SABCS四邊形DBCF.正確的有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBCBDABC的角平分線,DE、DF分別是ADBADC的角平分線,且BDFα,則AC的等量關(guān)系是________________(等式中含有α

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ACDF中,AC=DF,點(diǎn)BCD上,點(diǎn)EDF上,BC=DE=a,AC=BD=b,AB=BE=c,且ABBE

1)用兩種不同的方法表示長方形ACDF的面積S

方法一:S=

方法二:S=

2)求a,bc之間的等量關(guān)系(需要化簡)

3)請(qǐng)直接運(yùn)用(2)中的結(jié)論,求當(dāng)c=5,a=3,S的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水泥儲(chǔ)存罐的容量為25m3,它有一個(gè)輸入口和一個(gè)輸出口.從某時(shí)刻開始,只打開輸入口,勻速向儲(chǔ)存罐內(nèi)注入水泥,3min后,再打開輸出口,勻速向運(yùn)輸車輸出水泥,又經(jīng)過2.5min水泥儲(chǔ)存罐注滿.已知水泥儲(chǔ)存罐內(nèi)的水泥量ym3)與時(shí)間xmin)之間的函數(shù)圖象如圖所示.

1)求每分鐘向儲(chǔ)存罐內(nèi)注入的水泥量;

2)當(dāng)3x5.5時(shí),求yx之間的函數(shù)關(guān)系式;

3)水泥儲(chǔ)存罐每分鐘向運(yùn)輸車輸出的水泥量是多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教科書中這樣寫道:“我們把多項(xiàng)式叫做完全平方式,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:

1)分解因式: _____

2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.

3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識(shí)鏈接)斐波那契(約 11701250,意大利數(shù)學(xué)家)數(shù)列是按某種規(guī)律排列的一列數(shù),他發(fā)現(xiàn)該數(shù)列中的每個(gè)正整數(shù)都可以用無理數(shù)的形式表示,如第 nn 為正整數(shù))個(gè)數(shù) an 可表示為.

(知識(shí)運(yùn)用)計(jì)算第一個(gè)數(shù) a1 和第二個(gè)數(shù) a2

(探究證明)證明連續(xù)三個(gè)數(shù)之間 an1anan+1 存在以下關(guān)系:an+1an=an1n≥2).

(探究拓展)根據(jù)上面的關(guān)系,請(qǐng)寫出斐波那契數(shù)列中的前 8 個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長都是單位1,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)將△ABC向右平移3個(gè)單位長度再向下平移2個(gè)單位長度,畫出兩次平移后的△A1B1C1;
(2)寫出A1、C1的坐標(biāo);
(3)將△A1B1C1繞C1逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C1 , 求△A1B1C1旋轉(zhuǎn)過程中掃過的面積(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案