【題目】已知∠MON90°,等邊三角形ABC的一個頂點B是射線ON上的一定點,頂點A于點O重合,頂點C在∠MON內(nèi)部

(1)當點A在射線OM上移動到A1時,連接A1B,請在∠MON內(nèi)部作出以A1B為一邊的等邊三角形A1BC1(保留作圖痕跡,不寫作法);

(2)設(shè)A1BOC交于點Q,BC的延長線與A1C1交于點D.求證:△BCQ∽△BA1D;

(3)連接CC1,試猜想∠BCC1為多少度,并證明你的猜想.

【答案】(1)詳見解析;(2)詳見解析;(3)BCC190°,理由詳見解析.

【解析】

1)分別以B、A1為圓心,A1B長為半徑畫弧,兩弧交于一點C1,連接A1C1,BC1即可;
2)根據(jù)條件可以得到∠BCQ=BA1D=60°,∠A1BD=QBC,即可證出△BCQ∽△BA1D;
3)首先證明∠ABA1=CBC1,再利用SAS定理證出△A1BA≌△C1BC,即可得到∠BCC1=BAA1=90°

1)如圖所示:

2)∵△ACB和△A1C1B都是等邊三角形,

∴∠BCQ=∠BA1D60°

∵∠A1BD=∠QBC,

∴△BCQ∽△BA1D

3)猜想∠BCC190°,

∵△ACB和△A1C1B都是等邊三角形,

∴∠CBA=∠A1BC160°,A1BC1B,ABCB

∴∠ABA1=∠CBC1,

在△A1BA和△C1BC中: ,

∴△A1BA≌△C1BCSAS),

∴∠BCC1=∠BAA190°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc0)與直線l都經(jīng)過y軸上的同一點,且拋物線L的頂點在直線l上,則稱次拋物線L與直線l具有一帶一路關(guān)系,并且將直線l叫做拋物線L路線,拋物線L叫做直線l帶線”.

(1)若路線”l的表達式為y=2x﹣4,它的帶線”L的頂點的橫坐標為﹣1,帶線”L的表達式;

(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有一帶一路關(guān)系,求m,n的值;

(3)設(shè)(2)中的帶線”L與它的路線”ly軸上的交點為A.已知點P帶線”L上的點,當以點P為圓心的圓與路線”l相切于點A時,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組為了研究中小學男生身高ycm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計的中小學男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標系中描出了表中數(shù)據(jù)對應(yīng)的點,并發(fā)現(xiàn)前5個點大致位于直線AB上,后7個點大致位于直線CD上.

年齡組x

7

8

9

10

11

12

13

14

15

16

17

男生平均身高y

115.2

118.3

122.2

126.5

129.6

135.6

140.4

146.1

154.8

162.9

168.2

1)該市男學生的平均身高從   歲開始增加特別迅速.

2)求直線AB所對應(yīng)的函數(shù)表達式.

3)直接寫出直線CD所對應(yīng)的函數(shù)表達式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對應(yīng)的函數(shù)關(guān)系,請你預測該市18歲男生年齡組的平均身高大約是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點AACx軸交拋物線于點C,AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設(shè)其橫坐標為m.

(1)求拋物線的解析式;

(2)若動點P在直線OE下方的拋物線上,連結(jié)PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAEBAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y12x+2x軸、y軸于點AC,直線x軸、y軸于點B、C,點P(m1)是△ABC內(nèi)部(包括邊上)的一點,則m的最大值與最小值之差為(  )

A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當t為何值時,射線PM是∠QPN巧分線;

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果零售商店,通過對市場行情的調(diào)查,了解到兩種水果銷路比較好,一種是冰糖橙,一種是睡美人西瓜.通過兩次訂貨購進情況分析發(fā)現(xiàn),買40箱冰糖橙和15箱睡美人西瓜花去2000元,買20箱冰糖橙和30箱睡美人西瓜花去1900元.

1)請求出購進這兩種水果每箱的價格是多少元?

2)該水果零售商在五一期間共購進了這兩種水果200箱,冰糖橙每箱以40元價格出售,西瓜以每箱50元的價格出售,獲得的利潤為w元.設(shè)購進的冰糖橙箱數(shù)為a箱,求w關(guān)于a的函數(shù)關(guān)系式;

3)在條件(2)的銷售情況下,但是每種水果進貨箱數(shù)不少于30箱,西瓜的箱數(shù)不少于冰糖橙箱數(shù)的5倍,請你設(shè)計進貨方案,并計算出該水果零售商店能獲得的最大利潤是多少?

查看答案和解析>>

同步練習冊答案