【題目】如圖,△ABC中,AB=AC,點(diǎn)P是三角形右外一點(diǎn),且∠APB=∠ABC.
(1)如圖1,若∠BAC=60°,點(diǎn)P恰巧在∠ABC的平分線上,PA=2,求PB的長(zhǎng);
(2)如圖2,若∠BAC=60°,探究PA,PB,PC的數(shù)量關(guān)系,并證明;
(3)如圖3,若∠BAC=120°,請(qǐng)直接寫出PA,PB,PC的數(shù)量關(guān)系.
【答案】(1)、BP=4;(2)、PA+PC=PB,證明過程見解析;(3)、PA+PC=PB
【解析】
試題分析:(1)、根據(jù)題意得出△ABC為等邊三角形,根據(jù)點(diǎn)P在∠ABC的平分線上,則∠ABP=30°,根據(jù)∠PAB=90°得出BP=2AP;(2)、在在BP上截取PD,使PD=PA,連結(jié)AD,證明△ABD和△ACP全等,從而得出PC=BD,得出所求的答案;(3)、根據(jù)同樣的方法得出線段之間的關(guān)系.
試題解析:(1)、∵AB=AC,∠BAC=60°,
∴△ABC是等邊三角形,∠APB=∠ABC,
∴∠APB=60°,
又∵點(diǎn)P恰巧在∠ABC的平分線上,
∴∠ABP=30°
∴∠PAB=90°.
∴BP=2AP,
∵AP=2,
∴BP=4.
(2)、結(jié)論:PA+PC=PB.
在BP上截取PD,使PD=PA,連結(jié)AD.
∵∠APB =60°,
∴△ADP是等邊三角形,
∴∠DAP =60°,
∴∠1=∠2,PA=PD,
又∵AB=AC,
∴△ABD≌△ACP,
∴PC=BD,
∴PA+PC=PB.
(3)、結(jié)論:PA+PC=PB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算結(jié)果中等于3的數(shù)是( )
A. |﹣7|+|+4| B. |(﹣7)+(+4)| C. |+7|+|﹣4| D. |(﹣7)﹣(﹣3)|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)度為9、12、15、36、39的五根木棍,從中取三根依次搭成三角形,最多可搭成直角三角形的個(gè)數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知-a<b<-c<0<-d,且|d|<|c|,a,b,c,d,0這五個(gè)數(shù)由大到小用“>”依次排列為( 。
A. a>b>c>0>d B. a>0>d>c>b
C. a>c>0>d>b D. a>d>c>0>b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)晴朗的天氣里,小穎在向正北方向走路時(shí),發(fā)現(xiàn)自己的身影向左偏,你知道小穎當(dāng)時(shí)所處的時(shí)間是( 。
A. 上午 B. 中午 C. 下午 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】( 10分)如圖,已知B、C、E三點(diǎn)在同一條直線上,△ABC與△DCE都是等邊三角形,其中線段BD交AC于點(diǎn)G,線段AE交CD于點(diǎn)F,求證:
(1)△ACE≌△BCD;
(2)=.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com