如下圖,在邊長為的正方形中,剪去一個邊長為的小正方形(),將余下部分剪開后拼成一個梯形,根據(jù)兩個圖形陰影面積的關系,可以得到一個關于的恒等式為(    ).

A.        B.  

C.        D. 

 

【答案】

C

【解析】正方形中,S陰影= - ;

梯形中,S陰影=(2a+2b)(a-b)=(a+b)(a-b);

故所得恒等式為:- =(a+b)(a-b).故選C.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在我國古代數(shù)學著作《九章算術》中記載了一個有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根新生的蘆葦,它高出水面1尺,如下圖所示,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.那么水深多少?蘆葦長為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張在數(shù)學實踐活動中,畫了一個Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心以AD長為半徑畫弧交AC于點E,如圖,則AE=
5
-1
5
-1
;此時小張發(fā)現(xiàn)AE2=AC•EC,請同學們驗證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點E,接著構造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應用遷移:
利用上面的結論,直接寫出:
①半徑為2的圓內接正十邊形的邊長為
5
-1
5
-1

②邊長為2的正五邊形的對角線的長為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如下圖所示,正方形A1B1C1D1、正方形A2B2C2D2,正方形A3B3C3D3、…,正方形AnBnCnDn均位于第一象限內,它們的邊平行于x軸或y軸,其中點A1,A2,…,An在直線y=x上,點C1,C2,…,Cn在直線y=2x上.
結論1:若正方形A1B1C1D1的邊長為1,則點B1坐標為(2,3);
結論2:若正方形A2B2C2D2的邊長為2,則點B2坐標為(4,6);
結論3:若正方形A3B3C3D3的邊長為3,
則點B3坐標為(6,9);

(1)請觀察上面結論的規(guī)律,猜想出結論n(n是正整數(shù));
(2)證明你猜想的結論n是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年江蘇地區(qū)數(shù)學中考動態(tài)型試題-新人教 題型:059

如下圖,在邊長為2個單位長度的正方形ABCD中,點O、E分別是AD、AB的中點,點F是以點O為圓心、OE的長為半徑的圓弧與DC的交點,點P是上的動點,連結OP,并延長交直線BC于點K.

(1)當點P從點E沿運動到點F時,點K運動了多少個單位長度?

(2)過點P作所在圓的切線,當該切線不與BC平行時,設它與射線AB、直線BC分別交于點M、G.

①當K與B重合時,BG∶BM的值是多少?

②在點P運動的過程中,是否存在BG∶BM=3的情況?你若認為存在,請求出BK的值;你若認為不存在,試說明其中的理由.

一般地,是否存在BG∶BM=n(n為正整數(shù))的情況?試提出你的猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在我國古代數(shù)學著作《九章算術》中記載了一個有趣的問題,這個問題的意思是:有一個水池,截面是一個邊長為10尺的正方形,在水池正中央有一根新生的蘆葦,它高出水面1尺,如下圖所示,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.那么水深多少?蘆葦長為多少?

查看答案和解析>>

同步練習冊答案