分析 (1)由∠1=∠2,證出∠BAC=∠DAE.再由∠C=∠E,即可得出結(jié)論;
(2)由AAS證明△ABC≌△ADE即可.
解答 (1)證明:∵∠1=∠2,
∴∠1+∠DAC=∠2+∠DAC,
∴∠BAC=∠DAE.
∵∠C=∠E,
∴△ABC∽△ADE.
(2)補(bǔ)充的條件為:AB=AD(答案不唯一);理由如下:
由(1)得:∠BAC=∠DAE,
在△ABC和△ADE中,$\left\{\begin{array}{l}{∠BAC=∠DAE}&{\;}\\{∠C=∠E}&{\;}\\{AB=AD}&{\;}\end{array}\right.$,
∴△ABC≌△ADE;
故答案為:AB=AD(答案不唯一).
點(diǎn)評(píng) 本題考查了相似三角形的判定、全等三角形的判定;熟練掌握相似三角形的判定方法和全等三角形的判定方法是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在2與3之間 | B. | 在3與4之間 | C. | 在4與5之間 | D. | 在5與6之間 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x+y=1}\\{x-z=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{{y}^{2}-1=0}\\{x-2y=0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{y-2x=1}\\{y=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{1}{x}+3y=0}\\{x-y=1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com