【題目】已知⊙O的直徑為10,點(diǎn)A、點(diǎn)B、點(diǎn)C在⊙O上,∠CAB的平分線(xiàn)交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD的長(zhǎng);
(2)如圖②,若∠CAB=60°,CF⊥BD,①求證:CF是⊙O的切線(xiàn);②求由弦CD、CB以及弧DB圍成圖形的面積.
【答案】⑴AC=8,BD=5;⑵①證明見(jiàn)解析;②.
【解析】試題分析:(1)要求AC的長(zhǎng),將AC放在Rt△ABC中,利用勾股定理可求得;要求BD的長(zhǎng),先證明△BCD為等腰直角三角形,再結(jié)合勾股定理可求出;(2)①連接OC,證明∠OCF=90°即可;②通過(guò)證明△CGD≌△OGB,可以得到S△CGD=S△OGB,由此將陰影部分面積轉(zhuǎn)化為扇形DOB的面積,利用扇形面積公式求出即可.
試題解析:
(1)∵BC為⊙O的直徑,
∴∠CAB=∠CDB=90°,
∵BC=10,AB=6,
∴AC==8,
∵AD平分∠CAB,
∴∠CAD=∠DAB=45°,
∴CD=BD,
∵CD2+BD2=BC2,
∴2BD2=100,
∴BD=5;
(2)
連接CO、OD、OB,
∵∠CAB=60°,AD平分∠CAB,
∴∠CDB=120°,∠COB=120°,∠CAD=∠DAB=30°,
∴∠CDF=60°, =,
∴∠COD=∠BOD=60°,
∵OC=OD,
∴∠OCD=60°,
∵CF⊥BD,
∴∠CFD=90°,
∴∠DCF=30°,
∴∠OCF=90°,
∴CF是⊙O的切線(xiàn);
∵OC=OB,∠COD=∠BOD,
∴OG⊥BC,
∵∠OCD=60°,∠COD=60°,
∴△COD為等邊三角形,
∴OG=GD,∠CDG=∠DOB=60°,
在△CGD和△OGB中,
,
∴△CGD≌△OGB,
∴S△CGD=S△OGB,
∴S陰影=S扇形BOD==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C.
(1)畫(huà)出△A1B1C,直接寫(xiě)出點(diǎn)A1、B1的坐標(biāo);
(2)求在旋轉(zhuǎn)過(guò)程中,△ABC所掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC的高,E為AC上一點(diǎn),BE交AD于F,且有BF=AC, FD=CD。求證:(1) Rt△BDF≌Rt△ADC (2) BE⊥AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)轉(zhuǎn)盤(pán)被分成6個(gè)相等的扇形,顏色分為紅、綠、黃三種,指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢?/span>(指針指向兩個(gè)扇形的交線(xiàn)時(shí),重新轉(zhuǎn)動(dòng)).下列事件:①指針指向紅色;②指針指向綠色;(③指針指向黃色;④指針不指向黃色,估計(jì)各事件的可能性大小,完成下列問(wèn)題.
(1)④事件發(fā)生的可能性大小是 ;
(2)多次實(shí)驗(yàn),指針指向綠色的頻率的估計(jì)值是 ;
(3)將這些事件的序號(hào)按發(fā)生的可能性從小到大的順序排列為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中小方格都是邊長(zhǎng)為1的正方形,△ABC與△A′B′C′是關(guān)于點(diǎn)G為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形頂點(diǎn)上.
(1)畫(huà)出位似中心點(diǎn)G;
(2)若點(diǎn)A、B在平面直角坐標(biāo)系中的坐標(biāo)分別為(﹣6,0),(-3,2),點(diǎn)P(m,n)是線(xiàn)段AC上任意一點(diǎn),則點(diǎn)P在△A′B′C′上的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷(xiāo)售一種成本價(jià)為每件60元的商品,規(guī)定銷(xiāo)售期間銷(xiāo)售單價(jià)不低于成本價(jià),且每件獲利不得高于成本價(jià)的45%.經(jīng)測(cè)算,每天的銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=﹣x+120,設(shè)該網(wǎng)店每天銷(xiāo)售該商品所獲利潤(rùn)為W(元).
(1)試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;
(2)銷(xiāo)售單價(jià)定為多少元時(shí),該網(wǎng)店每天銷(xiāo)售該商品可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該網(wǎng)店每天銷(xiāo)售該商品所獲利潤(rùn)不低于500元,請(qǐng)直接寫(xiě)出銷(xiāo)售單價(jià)x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線(xiàn)EF分別與直線(xiàn)AB,CD相交于點(diǎn)F,E,EM平分∠FED,AB∥CD,H,P分別為直線(xiàn)AB和線(xiàn)段EF上的點(diǎn)。
(1)如圖1,HM平分∠BHP,若HP⊥EF,求∠M的度數(shù)。
(2)如圖2,EN平分∠HEF交AB于點(diǎn)N,NQ⊥EM于點(diǎn)Q,當(dāng)H在直線(xiàn)AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為1,直線(xiàn)CD經(jīng)過(guò)圓心O,交⊙O于C、D兩點(diǎn),直徑AB⊥CD,點(diǎn)M是直線(xiàn)CD上異于點(diǎn)C、O、D的一個(gè)動(dòng)點(diǎn),AM所在的直線(xiàn)交于⊙O于點(diǎn)N,點(diǎn)P是直線(xiàn)CD上另一點(diǎn),且PM=PN.
(1)當(dāng)點(diǎn)M在⊙O內(nèi)部,如圖一,試判斷PN與⊙O的關(guān)系,并寫(xiě)出證明過(guò)程;
(2)當(dāng)點(diǎn)M在⊙O外部,如圖二,其它條件不變時(shí),(1)的結(jié)論是否還成立?請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)M在⊙O外部,如圖三,∠AMO=15°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△OAB和等邊△AFE的一邊都在x軸上,雙曲線(xiàn)y=(k>0)經(jīng)過(guò)邊OB的中點(diǎn)C和AE的中點(diǎn)D.已知等邊△OAB的邊長(zhǎng)為4.
(1)求該雙曲線(xiàn)所表示的函數(shù)解析式;
(2)求等邊△AEF的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com