【題目】已知、,添加下列條件后,不能判斷四邊形為菱形的是( )
A. 平分
B. 且
C. 為中線
D.
【答案】C
【解析】
首先根據(jù)題意畫出圖形,然后由DE∥AC、DF∥AB,判定四邊形DEAF為平行四邊形,再由菱形的判定定理求解即可求得答案;注意掌握排除法在選擇題中的應(yīng)用.
如圖所示:
∵DE∥AC、DF∥AB,
∴四邊形DEAF為平行四邊形,
A選項(xiàng):∵AD平分∠BAC,DF∥AB,
∴∠BAD=∠CAD,∠BAD=∠ADF,
∴∠CAD=∠ADF,
∴AF=DF,
∴四邊形DEAF為菱形;
B選項(xiàng):∵AB=AC且BD=CD,
∴AD平分∠BAC,
同理可得:四邊形DEAF為菱形;
C選項(xiàng):∵由AD為中線,得不到AD平分∠BAC,證不出四邊形DEAF的鄰邊相等,
∴不能判斷四邊形DEAF為菱形;
D選項(xiàng):∵AD⊥EF,
∴平行四邊形DEAF是菱形.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)是上任意一點(diǎn),以為邊作正方形.
①連接,求證:;
②連接,猜想的度數(shù),并證明你的結(jié)論;
③設(shè)點(diǎn)在線段上運(yùn)動,,正方形的面積為,正方形的面積為,試求與的函數(shù)關(guān)系式,并寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為中的一條射線,點(diǎn)在邊上,于,交于點(diǎn),交于點(diǎn),于點(diǎn),交于點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
若,試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)是邊上(端點(diǎn)除外)的一個動點(diǎn),過點(diǎn)作直線.設(shè)交的平分線于點(diǎn),交的外角平分線于點(diǎn),連接、.
那么當(dāng)點(diǎn)運(yùn)動到何處時(shí),四邊形是矩形?并說明理由.
在的前提下滿足什么條件,四邊形是正方形?(直接寫出答案,無需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結(jié)果_________.
(3)請你模仿以上方法嘗試對多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,點(diǎn)、是對角線上的兩點(diǎn),且.則下列結(jié)論中,錯誤的是( )
A. 若四邊形是平行四邊形,則也是平行四邊形
B. 若四邊形是菱形,則四邊形也是菱形
C. 若四邊形是矩形,則四邊形也是矩形
D. 若四邊形是正方形,則四邊形一定是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com