下列方程組中二元一次方程組是

[  ]

A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個(gè),而在實(shí)際問題中我們往往只需要求出其正整數(shù)解.下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x為正整數(shù),則
2
3
x為正整數(shù),所以x為3的倍數(shù).
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

解決問題:
(1)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購買了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問有幾種購買方案?
(2)試求方程組
2x+y+z=10
3x+y-z=12
的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個(gè),而在實(shí)際問題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因?yàn)?<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個(gè).( 。
A、2    B、3    C、4   D、5
      (2)九年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,花費(fèi)35元購買了筆記本和鋼筆兩種獎(jiǎng)品,其中筆記本的單價(jià)為3元/本,鋼筆單價(jià)為5元/支,問有幾種購買方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

上學(xué)期,我們學(xué)習(xí)了解一元一次方程及用一元一次方程解決實(shí)際問題.本學(xué)期,我們又學(xué)習(xí)了解二元一次方程組,試用二元一次方程組及以前解決實(shí)際問題的經(jīng)驗(yàn)解決下列問題:
某校初一(1)班45名同學(xué)為“支援災(zāi)區(qū)”共捐款900元,捐款情況如下表:
捐款(元) 5 10 20 50
人數(shù) 6 7
表中捐款10元和20元的人數(shù)不小心被墨水污染,看不清楚,請(qǐng)你確定表中的數(shù)據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下列語句中①由∠A:∠B:∠C=2:3:4可確定△ABC是銳角三角形;②某等腰三角形的兩邊長分別為4和6,則這個(gè)三角形的周長為14或16;③一個(gè)圖形和它經(jīng)過平移所得的圖形中,兩組對(duì)應(yīng)點(diǎn)的連線平行;④對(duì)任何數(shù)a都有a0=1;⑤
x=2
y=1
是二元一次方程組,其中正確的是
①②⑤
①②⑤
(只要寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在下列三個(gè)二元一次方程中,請(qǐng)你選擇合適的兩個(gè)方程組成二元一次方程組,然后求出方程組的解. 
可供選擇的方程:①y=2x-3  ②2x+y=5  ③4x-y=7.
(2)解方程組 
3(x-1)=y+5
5(y-1)=3(x+5)
;
(3)已知x、y滿足
2x+y
2
=
5x+2y
4
=1
,求代數(shù)式
3x+2y+3
2x-3y+7
的值.

查看答案和解析>>

同步練習(xí)冊答案