【題目】如圖,在RtABC中,∠BAC=90°,點DBC中點,將ABD繞點A按逆時針方向旋轉(zhuǎn)50°,記點D在旋轉(zhuǎn)過程中所經(jīng)過的路徑長為m,將ABD繞點C按順時針方向旋轉(zhuǎn)100°,則點D在旋轉(zhuǎn)過程中所經(jīng)過的路徑長為________.(用含m的代數(shù)式表示)

【答案】2m

【解析】

利用旋轉(zhuǎn)的性質(zhì),根據(jù)已知條件可知:兩次旋轉(zhuǎn)的半徑相等,圓心角存在2倍關(guān)系,因此可知它們的路徑長也是2倍關(guān)系,即可求解.

Rt△ABC中,∠BAC=90°,點DBC中點,

∴CD=AD

如圖,∵將△ABD繞點A按逆時針方向旋轉(zhuǎn)50°,記點D在旋轉(zhuǎn)過程中所經(jīng)過的路徑長為m,

此時圓心角為50°,弧所在圓的半徑為AD,

△ABD繞點C按順時針方向旋轉(zhuǎn)100°

此時圓心角為100°,弧所在圓的半徑為CD,

此時點D在旋轉(zhuǎn)的過程中所經(jīng)過的路徑長為2m.

故答案為:2m.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,是邊上一點,且.已知經(jīng)過點,與邊所在直線相切于點為銳角),與邊所在直線交于另一點,且,當邊所在的直線與相切時,的長是(

A.13B.4C.D.412

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點B1成中心對稱,再作B2A3B3B2A2B1關(guān)于點B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組的同學們,想利用自己所學的數(shù)學知識測量學校旗桿的高度:下午活動時間,興趣小組的同學們來到操場,發(fā)現(xiàn)旗桿的影子有一部分落在了墻上(如圖所示).同學們按照以下步驟進行測量:測得小明的身高1.65米,此時其影長為2.5米;在同一時刻測量旗桿影子落在地面上的影長BC9米,留在墻上的影高CD2米,請你幫助興趣小組的同學們計算旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司在甲乙兩地同時銷售某種品牌的汽車,已知在甲地的總銷售利潤y(單位:萬元)與銷售量x(單位:輛)之間滿足y=﹣x2+10x,在乙地每銷售一輛汽車可獲得2萬元的銷售利潤,若該公司在甲乙兩地共銷售30輛該品牌的汽車,甲乙兩地總的銷售利潤為W萬元,其中在甲地銷售x輛.

1)求Wx的函數(shù)關(guān)系式;

2)甲乙兩地各銷售多少輛車時W最大?W的最大值是多少?

3)為了開拓甲地市場,公司規(guī)定甲地平均每輛汽車的銷售利潤不高于2萬元,那么公司銷售這30輛汽車可獲得的最大銷售利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】金秋時節(jié),碩果飄香,某精準扶貧項目果園上市一種有機生態(tài)水果,為幫助果園拓寬銷路.欣欣超市對這種水果進行代銷,進價為5元/千克,售價為6元/千克時,當天的銷售量為60千克;在銷售過程中發(fā)現(xiàn):銷售單價每上漲0.5元,當天的銷售量就減少5千克.設(shè)當天銷售單價統(tǒng)一為x元/千克(x≥6,且x0.5元的倍數(shù)上漲),當天銷售利潤為y.

(1)yx的函數(shù)關(guān)系式;

(2)若該種水果每千克的利潤不超過80%,求當天獲得利潤的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,POAB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊全等的含30°角的直角三角板按如圖1所示的方式放置,已知∠BAC=∠B1A1C30°.固定三角板A1B1C,然后將三角板ABC繞直角頂點C順時針旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至如圖2所示的位置,ABA1C、A1B1分別交于點DE,ACA1B1交于點F

1)當旋轉(zhuǎn)角等于20°時,∠BCB1   °;

2)當旋轉(zhuǎn)角等于多少度時,ABA1B1垂直?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有兩個實數(shù)根x1x2

1)求實數(shù)k的取值范圍;

2)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案