如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是    度.
【答案】分析:解題關(guān)鍵是把所求的角轉(zhuǎn)移成與已知角有關(guān)的角.
解答:解:根據(jù)對頂角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,
∵△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,∠BAC=150°,
∴∠DAC=∠BAE=∠BAC=150°.
∴∠DAE=∠DAC+∠BAE+∠BAC-360°=150°+150°+150°-360°=90°.
∴∠θ=∠EAC=∠DAC-∠DAE=60°.
點評:翻折前后對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△BCD都是等邊三角形,且每個角是60°,那么線段AD與EC有何數(shù)量關(guān)系?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△ACD中,給出以下四個論斷:
(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
請你以其中三個論斷為已知,剩下的一個作為要證明的結(jié)論,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABE和△ACD有公共點A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延長BE分別交AC、CD于點M、F.求證:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步練習(xí)冊答案