【題目】如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于C,OC平分∠AOB.
(1)求∠AOB的度數;
(2)若線段CD的長為2cm,求的長度.
【答案】(1)120°;(2).
【解析】
(1)由AM為圓O的切線,利用切線的性質得到OA與AM垂直,再由BD與AM垂直,得到OA與BD平行,利用兩直線平行內錯角相等得到一對角相等,再由OC為角平分線得到一對角相等,以及OB=OC,利用等邊對等角得到一對角相等,等量代換得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;
(2)過點O作OE⊥BD,垂足為E,由題意可證四邊形ADEO是矩形,可得OA=DE,即可求CD=CE=2cm,可得OA=4cm,根據弧長公式可求弧AB的長度.
解:(1)∵AM為圓O的切線,
∴OA⊥AM,
∵BD⊥AM,
∴∠OAD=∠BDM=90°,
∴OA∥BD,
∴∠AOC=∠OCB,
∵OB=OC,
∴∠OBC=∠OCB,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∴∠BOC=∠OCB=∠OBC=60°,
∴∠AOB=120°;
(2)如圖:過點O作OE⊥BD,垂足為E
∵∠BOC=∠OCB=∠OBC=60°,
∴OB=OC=BC
∵OE⊥BD,
∴BE=CE=BC=OA
∵OE⊥BD,且OA⊥AD,BD⊥AD
∴四邊形ADEO是矩形
∴OA=DE
∴CD+CE=OA=2CE,且CD=2cm
∴CE=2cm
∴OA=4cm
∴弧AB的長度= =π
科目:初中數學 來源: 題型:
【題目】如圖,晚上,小亮在廣場上乘涼.圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈.
(1)請你在圖中畫出小亮在照明燈(P)照射下的影子;
(2)如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圓桌面(桌面中間有一個直徑為1m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為2m,桌面離地面1m,若燈泡離地面2m,則地面圓環(huán)形陰影的面積是( 。
A. 2πm2 B. 3πm2 C. 6πm2 D. 12πm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東方向航行,行至A處測得燈塔P在它的北偏東60°的方向上,繼續(xù)向東行駛20分鐘后,到達B處又測得燈塔P在它的北偏東45°方向上,求輪船與燈塔的最短距離.(精確到0.1, ≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將函數y=x+b(b為常數)的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數y=|x+b|(b為常數)的圖象
(1)當b=0時,在同一直角坐標系中分別畫出函數與y=|x+b|的圖象,并利用這兩個圖象回答:x取什么值時,比|x|大?
(2)若函數y=|x+b|(b為常數)的圖象在直線y=1下方的點的橫坐標x滿足0<x<3,直接寫出b的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:
(1)OA=_____;
(2)作出∠AOB的平分線并在其上標出一個點Q,使OQ=.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com