【題目】將函數(shù)y=x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|x+b|(b為常數(shù))的圖象
(1)當(dāng)b=0時,在同一直角坐標(biāo)系中分別畫出函數(shù)與y=|x+b|的圖象,并利用這兩個圖象回答:x取什么值時,比|x|大?
(2)若函數(shù)y=|x+b|(b為常數(shù))的圖象在直線y=1下方的點的橫坐標(biāo)x滿足0<x<3,直接寫出b的取值范圍
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)若線段CD的長為2cm,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是三張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上
(1)在圖(1)中,點P在小正方形的頂點上,作出點P關(guān)于直線AC的對稱點Q
(2)在圖(2)中,畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上
(3)在圖(3)中,B是AC的中點,作線段AB的垂直平分線,要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留必要的作圖痕跡
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+3上的三點,則y1,y2,y3的大小關(guān)系為( 。
A. y1>y2>y3 B. y1>y3>y2 C. y3>y2>y1 D. y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實數(shù)根x1和x2.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用條長40厘米的繩子圍成一個矩形,設(shè)其一邊長為x厘米.
(1)若矩形的面積為96平方厘米,求x的值;
(2)矩形的面積是否可以為101平方厘米?如果能,請求x的值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點P(m,n)和點Q(x,y).給出如下定義:若 ,則稱點Q為點P的“伴隨點”.例如:點(1,2)的“伴隨點”為點(5,0).
(1)若點Q(﹣2,﹣4)是一次函數(shù)y=kx+2圖象上點P的“伴隨點”,求k的值.
(2)已知點P(m,n)在拋物線C1:y=上,設(shè)點P的“伴隨點”Q(x,y)的運動軌跡為C2.
①直接寫出C2對應(yīng)的函數(shù)關(guān)系式.
②拋物線C1的頂點為A,與x軸的交點為B(非原點),試判斷在x軸上是否存在點M,使得以A、B、Q、M為頂點的四邊形是平行四邊形?若存在,求點M的坐標(biāo);若不存在,說明理由.
③若點P的橫坐標(biāo)滿足﹣2≤m≤a時,點Q的縱坐標(biāo)y滿足﹣3≤y≤1,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正確結(jié)論的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com