【題目】一文具廠接到生產(chǎn)一批橡皮和水筆的任務(wù),已知該文具廠銷售200個橡皮和200個水筆的利潤為160元,銷售100個橡皮和200個水筆的利潤為130元.已知該文具廠每天生產(chǎn)橡皮和水筆共4500個,生產(chǎn)橡皮和水筆每個成本分別為2元,3元,設(shè)每天生產(chǎn)橡皮個,該文具廠每天生產(chǎn)成本為元.
(1)求橡皮和水筆的銷售單價;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)若該文具廠每天最多投入成本為10000元,求該文具廠每天獲得利潤最多是多少元?
【答案】(1)橡皮和水筆的銷售單價分別為2.3元、3.5元;(2)y=-x+13500;(3)1550元
【解析】
(1)設(shè)橡皮和水筆的銷售單價分別為a元和b元,根據(jù)題意列出方程,求出方程組解出即可;
(2)根據(jù)生產(chǎn)成本=生產(chǎn)橡皮的成本+生產(chǎn)水筆的成本,可得結(jié)論;
(3)設(shè)該文具廠每天獲得利潤為w元,表示利潤w=銷售橡皮的利潤+銷售水筆的利潤,根據(jù)x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)解答即可.
解:(1)設(shè)橡皮的銷售單價為a元,水筆的銷售單價為b元,
根據(jù)題意得,解得,
答:橡皮和水筆的銷售單價分別為2.3元、3.5元;
(2)根據(jù)題意可得,每天生產(chǎn)水筆為(4500-x)個,
則該文具廠每天生產(chǎn)成本y=2x+(4500-x)×3=-x+13500;
答:y關(guān)于x的函數(shù)關(guān)系式為y=-x+13500;
(3)設(shè)每天獲得利潤為w元,
則有w=(2.3-2)x+(4500-x)×(3.5-3)=-0.2x+2250,
根據(jù)題意得-x+13500≤10000,解得x≥3500,
∵w隨x的增大而減小,
∴當(dāng)x=3500時,w最大=1550,
答:該文具廠每天獲得利潤最多是1550元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項(xiàng)球類運(yùn)動,每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
運(yùn)動項(xiàng)目 | 頻數(shù)(人數(shù)) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)在扇形統(tǒng)計(jì)圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,分別交BC,AC于點(diǎn)D,E,過點(diǎn)D作DF⊥AC于點(diǎn)F
(1)求證:DF是⊙O的切線;
(2)若∠C=60°,⊙O的半徑為2,求由弧DE,線段DF,EF圍成的陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次社會大課堂的數(shù)學(xué)實(shí)踐活動中,王老師要求同學(xué)們測量教室窗戶邊框上的點(diǎn)C到地面的距離即CD的長,小英測量的步驟及測量的數(shù)據(jù)如下:
(1)在地面上選定點(diǎn)A, B,使點(diǎn)A,B,D在同一條直線上,測量出、兩點(diǎn)間的距離為9米;
(2)在教室窗戶邊框上的點(diǎn)C點(diǎn)處,分別測得點(diǎn), 的俯角∠ECA=35°,∠ECB=45°.請你根據(jù)以上數(shù)據(jù)計(jì)算出的長.
(可能用到的參考數(shù)據(jù):sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.點(diǎn)為的中點(diǎn),點(diǎn)為射線上一點(diǎn),將繞點(diǎn)順時針旋轉(zhuǎn)得到,設(shè),與重疊部分的面積為,關(guān)于的函數(shù)圖象如圖2所示(其中,,,時,函數(shù)的解析式不同).則__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”越來越受到人們的關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______;
(2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對應(yīng)扇形的圓心角的度數(shù)為______;
(3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對校園安全知識達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對校園安全知識達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識競賽,請用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AB=AC,D,E分別是邊BC,AC上的點(diǎn).且BD=EC,∠ADE=∠B.
(1)求證:AD=DE.
(2)若∠ADE=40°,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,將△ADE和△CDF分別沿直線DE和DF折疊后,點(diǎn)A和點(diǎn)C同時落在點(diǎn)H處,且E是AB中點(diǎn),射線DH交AC于G,交CB于M,則GH的長是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的內(nèi)角,,
(1)平分,交于點(diǎn),過點(diǎn)作,過點(diǎn)作,判斷四邊形的形狀:________;
(2)旋轉(zhuǎn)到,如圖2,邊交于點(diǎn),連接,AE=AF.過點(diǎn)作,過點(diǎn)作.問:是否平分.若是請證明,若不是請說明理由.
(3)四邊形在(2)的條件下,若恰好,如圖3.連接并延長,交的延長線于點(diǎn).求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com